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Relational NetKAT (RN) is a new specification language for network change validation. Engineers use RN to
specify intended changes by providing a trace relation R, which maps existing packet traces in the pre-change
network to intended packet traces in the post-change network. The intended set of traces may then be checked
against the actual post-change traces to uncover errors in implementation. Trace relations are constructed
compositionally from a language of combinators that include trace insertion, trace deletion, and packet
transformation, as well as regular operators for concatenation, union, and iteration of relations. We provide
algorithms for converting trace relations into a new form of NetKAT transducer and also for constructing an
automaton that recognizes the image of a NetKAT automaton under a NetKAT transducer. These algorithms,
together with existing decision procedures for NetKAT automaton equivalence, suffice for validating network
changes. We provide a denotational semantics for our specification language, prove our compilation algorithms
correct, implement a tool for network change validation, and evaluate it on a set of benchmarks drawn from a
production network and Amazon’s Batfish toolkit.
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1 Introduction

As industrial networks have grown in size and complexity, so too has the difficulty of keeping them
running smoothly, and when networks go down, critical services of all kinds are disrupted. Recogniz-
ing the threat, researchers looked to formal methods to systematically detect and prevent problems,
and over the course of the 2010s, the foundations for sound and scalable network verification
were born through systems such as Anteater [Mai et al. 2011], Header Space Analysis [Kazemian
et al. 2012], Veriflow [Khurshid et al. 2013], Batfish [Fogel et al. 2015], NetKAT [Anderson et al.
2014a], Minesweeper [Beckett et al. 2017], and Self-Starter [Kakarla et al. 2020], among others.
Today, thanks to the transfer of technology, ideas, and people, most if not all large hyperscale cloud
providers, including Microsoft, Amazon, and Google, use verification tools to make their networks
more reliable [Backes et al. 2019; Jayaraman et al. 2019; Zeng et al. 2014].

Despite the successes and wide adoption of these techniques, making changes to network
configurations continues to be a risky activity. A key problem is that existing specification languages
are poorly suited for concisely describing the full effect of common network changes. They focus on
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single-snapshot verification, that is, checking the properties of a single network configuration. Using
single-snapshot verification, one can check coarse properties of the changed network such as
reachability, isolation, or access control. However, a comprehensive analysis of a change will often
involve (1) identifying all of the paths in the old network that satisfy some property (the need to be
changed), (2) checking that the new network contains all and exactly the corresponding changed
paths and that those changed paths have the desired properties, and (3) checking that none of
the other paths in the old network (those that should not have been altered) have been corrupted,
blocked, or rerouted in the new network. Single-snapshot verifiers provide no means of “getting
one’s hands on” the old paths and ensuring they are properly changed in the updated network—by
definition single-snapshot verifiers do not reference the old paths or old network at all.

To overcome such issues, Xu et al. [2024] recently proposed relational network verification. In
their system, called Rela, networks were modeled as sets of paths, where each path is a sequence of
locations (device groups, switches, or interfaces) along which a packet will travel. A language of
rational relations over paths was used in combination with the old network to specify the intended
network change. More precisely, network engineers would write a transformer R to indicate the
intent of a change and specifications took (roughly) the form “old » R = new” where old and new
encoded the paths through the old and new networks respectively. The relation R transforms the
old network into a set of expectations and those expectations are compared with the new network.
Their change specifications were compact, often being just 10s of lines of code, even for networks
with millions of flows, because even in large networks, individual changes are often small.

While Rela is a strong progess on an important problem, its “set of paths” model is a weak
model for a modern network. It cannot represent internal decision-making made by network
forwarding tables, which classify and act on packets with different headers in different ways, nor
can it represent packet transformations, such as those used in network address translators (NATs),
tunnels, or other purposes in software-defined networks (SDN) (e.g., in-band network telemetry) .

In this paper, we introduce Relational NetKAT (RN for short), a new language capable of fully
and accurately specifying changes to stateless modern networks. Whereas Rela uses regular sets
of paths to describe networks, we adopt a stronger base model—that of NetKAT [Anderson et al.
2014a]—in which networks are described as sets of traces. Here, a trace is a sequence of located
packets—that is the headers of packets (destination IP, source IP, etc.) together with their network
location. By using NetKAT to describe traces, one can easily model packet forwarding tables, with
their match-action semantics compactly, as well as the various ways that stateless modern networks
modify packets including in devices such as stateless NATs, SDN devices, and tunnels.

Relational NetKAT augments traditional NetKAT with a new sublanguage of trace relations R.
Users can write relations that specify desired network changes by inserting new subpaths into
existing traces, or deleting old ones that should no longer be present. Alternatively, users can map
packet relations across the elements of a trace to represent changes to packet contents between old
and new networks. This new language of trace relations is compositional, conferring the ability to
construct complex specifications from simpler parts through the use of the regular operators for
concatenation, union, and iteration, and has a well-defined denotational semantics.

The main technical contribution of this paper is the automata-theoretic machinery that enables
verification of relational NetKAT specifications. First, we introduce a class of NetKAT transducers,
which are used to represent trace relations. NetKAT transducers may be thought of as an extension
of NetKAT automata with an additional tape. Second, we give an algorithm for constructing a
NetKAT automaton that recognizes the image of a NetKAT automaton under a NetKAT transducer.
In principle, this can be accomplished using classical algorithms for transducers, but the size of
the resulting NetKAT automaton is exponential in the size of the input. We avoid this state-space
explosion by making careful use of our domain: While networks are large, most changes are
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intended to be small [Xu et al. 2024], affecting a limited number of locations and/or flows in the
network. Consequently, “most” of the trace relation between old and new networks is the identity
relation, and we take care to exploit this property during image computation.

We have proven the correctness of our compilation algorithms and implemented them in a
tool for network verification. We evaluate the effectiveness of our tool in multiple ways. First, we
demonstrate the use of Relational NetKAT on Rela’s open benchmark, which is drawn from an
example change implemented in one of Alibaba’s production networks. While our prototype tool is
considerably slower than Rela due to the much more expressive trace specifications we process,' we
demonstrate it is fast enough for large-scale industrial use. Moreover, the fact one may process all
packet equivalence classes in parallel means that the slowdown may have little practical significance.
Second, we demonstrate the expressiveness of the RN specification language by tackling a series of
examples drawn from the Batfish toolkit. Here, we craft relational specifications for a corporate
network with NATs and IP tunneling, demonstrating how changes to forwarding may be specified
and checked.

2 Background: (Modestly Extended) NetKAT

NetKAT [Anderson et al. 2014b] is a decidable language for specifying properties of stateless network
data planes. While there are a number of frameworks for verifying stateless data planes, some in
heavy use in industry, NetKAT stands out as it provides a general, compositional specification
language in which new properties are easily constructed from smaller, simpler parts. When first
presented, NetKAT was equipped with an equational theory proven sound and complete with
respect to its denotational semantics. In this paper, we ignore NetKAT’s equational theory and
focus entirely on its denotational semantics and algorithms for compilation to automata. We need
only these latter elements for clearly defined specifications and decidable verification procedures.

In this paper, we present a slight variant and minor refactoring of traditional NetKAT, which we
call “Modestly Extended” NetKAT when we need to point out the differences. Modestly Extended
NetKAT contains a few additional primitives for crafting relations between one packet and the
next. These extensions are not very important for NetKAT itself; they play a larger role in our new
Relational NetKAT. Readers familiar with NetKAT may skip ahead to the syntax and semantics
presented in Figure 1.

Networks as Sets of Traces. NetKAT models a network as a set of possible traces, where each trace
captures the sequence of steps a packet takes from some network source to some network sink.
More specifically, a trace (tr) is a sequence of located packets (pk), where a located packet is record
mapping packet header field names to values and mapping the special loc field to the packet’s
current location in the network. Networks locations are often identified using a switch and a port
on that switch[Anderson et al. 2014b]. For simplicity, most of our examples are presented at a
slightly higher level of abstraction, calling out only the switch at which a packet has just arrived,
not the port at which it sits. For instance, if pk; is {loc = A;dst.ip = 1.1.1.1;- - - } and pk, and
pks are similar but with location fields B and C respectively then the trace (pk; pk; pks) represents
a path starting at the ingress to A, through B, and ending at the ingress to C for a packet with
destination IP address 1.1.1.1. In this case, the packet contents remain unchanged as it travels that
path, but in general, packet contents may change as it travels from A to B. We write pk[f « v] to
update field f of pk with value v.

Two traces may be concatenated only when the last packet of one trace equals the first packet
of the next trace, and when they do, the equal packets are dropped from the result. For instance,

land less time optimizing our prototype—Rela uses a heavily optimized, off-the-shelf library for equivalence of ordinary
finite automata.
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concatenating (pk; pk, pks) with (pky pks pke) results in (pky pk, pks pks) when pks = pky and is
undefined otherwise. Hence, concatenating two 2-element traces leaves us with a 2-element trace.
The concatenation of two trace sets (S; 0 S,) is defined as follows

S10Sz ={pki1 pkiz -+ pki(n—1) Pkaz -+ pkam |
pki1 -+ pki(n-1) Pkin € S1, pka1 pkaz -+ pkem € Sz, pk1n = pka1}

Compact Network Specifications. For a network of even modest size, its set of traces is enormous
as each packet header may be 100+ bits and paths can vary in length. Fortunately, NetKAT provides
a means to specify these sets of paths compactly. NetKAT contains two essential sublanguages: (1)
a language of boolean predicates, and (2) a language of packet relations.

The boolean predicates (pred) are used to classify packets so we can describe how sets of related
packets are forwarded efficiently. The basic predicate (f = v) is true of packets with field f containing
value v. Boolean combinations of basic predicates are possible using conjuction (-), disjunction(+)
and negation (—). For instance, (src.ip = 1.1.1.1) - (loc = A+1loc = C) describes the set of packets
with source IP 1.1.1.1 at locations A or C. We write (f # v) for =(f = v).

The packet relations (PkR) explain how to forward a packet one hop along its journey through a
network. Semantically, such relations denote sets of pairs of located packets. Traditional NetKAT
contains a basic relation to update a field of a packet, write f « v. When f is the location field,
loc «— L models the movement of a packet from its current location to some (likely new) location
L. NetKAT also contains the identity relation (1), which relates every packet to itself, and the empty
relation (0). More complex relations can be constructed through composition of packet relations
(PkR; o PkRy), intersection of packet relations (PkR; N PkR;), and cartesian product of predicates
(pred; x pred,). The latter relates every packet in the set pred; with every packet in the set pred,—it
may be used to model a nondeterministic forwarding relation, for instance. The cartesian product is
a new primitive for NetKAT, though its semantics could already be encoded through a disjunction
of many alternatives. We choose to add it as a primitive because doing so leads to a more efficient
implementation for a variety of our specifications. Without it, our encodings would be quadratic in
the size of the sets represented by pred, and pred,. Of particular importance is the havoc relation,
which we define as 1 X 1, and which relates any two packets. We write m for the subset of the
identity relation that includes only packets satisfying pred. In this version of NetKAT, M is an
abbreviation for 1N (pred x pred).

Full NetKAT expressions (K) denote sets of traces, with each trace at least two elements long.
NetKAT expressions include packet relations (PkR), which give rise to sets of 2-element traces,
concatenation (Kj o K3), union (K; + K3), and iteration of trace sets (K*). Finally, dup is the set
of 3-element traces: {pk pk pk | pk € Pk}. While the concatenation of any trace tr of length n
with a 2-element trace leaves a trace with n elements, concatenation of an n-element trace with
dup leaves a trace with n + 1 elements. One common abbreviation used in our specifications is
alltraces(pred)—the set of all traces that satisfy pred on every hop. alltraces(pred) is defined as
(pred x 1 o dup)™ o pred X pred. The syntax and semantics of NetKAT is summarized in Figure 1.

Examples. The data plane of a network is composed of a set of forwarding tables—for simplicity
here, one forwarding table per switch. Each forwarding table consists of a series of match-action
rules. The "match" component of a given rule is modeled as a NetKAT predicate and the action is
modeled by a packet relation. For example, a forwarding table containing rules

(1) forward packets with dst.ip 1.0.0.0 to switch B
(2) modify packets with dst.ip 1.0.0.1 so their src.ip is 2.0.0.0 before forwarding to C
(3) drop all other packets
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Syntax:
Pred x= 01| f=uv|Pred, +Pred, | Pred; - Pred, | =Pred
PkR == 0| 1| f « v|Pred x Pred |PkR; o PkR, |PkR; U PkR, |PkR; N PkR, |~PkR
K = PkR|K1+K2|K10K2|K*|dup
Common Abbreviations:
havoc = 1x1
pred = 1N (predx pred)
alltraces(pred) = (predx 1o dup)™ o pred x pred
alltraces = alltraces(1)
Semantics:
[[0]]Pred =0

[11prea = {pk | pk € Pk}
[loc = V] prea = {pk | pk.loc = v}
[-Pred]| prea = Pk \ [ Pred] prea
[Pred; + Preds]| prea = [ Predi ] prea U [Preds] prea
[Pred; - Preds || prea = [Predi ]| prea N [Preds] prea

[0llpxr = 0
[1]pr = {(pk, pk) | pk € Pk}
Lf < vllpr = {(pk. pk[f < o]) | pk € Pk}
[Pred; x Preds]|pkr = {(pk1, pks) | pki € [Predi]|prea; pka € [ Predz] prea}t
[PkRy o PkR: || pkr = {(pki1, pks) | 3pks. (pky, pk2) € [PkRi ] pir A (pkz, pks) € [ PkR: ]| prr}
[—PkR] pxr = Pk x Pk \ [ PkR] pir
[PkRy U PkR:]|pix = [PkR: kg U [PkR:] pir
[PkRy N PkR:]pix = [PkR: iz N [PkR: ] pir

[PkR]x = {pk1 pk2 | (pk1, pk2) € [[PkR] pxr}
[K: + K]k = [Killpkr Y [ Kz ] prr
[Kio Kl = [Killpkr - [ Kzl prr
[K1x = U[[K"]]K, where K =1, K™ = K" oK

nx0
[duplx = {pk pk pk | pk € Pk}
Fig. 1. Syntax and Semantics of (Modestly Extended) NetKAT
may be modeled using the NetKAT expression FTA =
(dst.ip =1.0.0.0 o loc « B) + % rule 1

(dst.ip=1.0.0.1 o src.ip « 2.0.0.0 0 loc «— C) + % rule 2

(dst.ip # 1.0.0.0 - dst.ip # 1.0.0.1 0 0) % rule 3

FTA’s denotation contains a set of 2-element traces, including for instance, the trace {loc =
L;dst.ip = 1.0.0.0;...} {loc = B;dst.ip = 1.0.0.0;...} for all locations L since the position of the
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forwarding table in the network is not specified. Further, since [K o 0] x = [0] k, the third rule is
unnecessary.

Now, suppose forwarding table FTA is located at switch A and switches B and C have their own
forwarding tables FTB and FTC respectively. A network containing those three switches may be
modeled with the following expression K;.

((Toc=A oFTA) + (Toc = B o FTB) + (Ioc = C o FTC)) o dup)”

Intuitively, the expression states that a packet travelling through the network may encounter any
of switches A, B or C, and when it does it is processed using their forwarding table. The Kleene
star indicates a packet may encounter 0 or more switches along its journey through the network.
The dup expression is used to control what is observed as a packet travels through the network—it
makes a copy of a packet and adds that copy to the trace. Without it, we would have only 2-element
traces that record start and end points of a packet’s journey. When making a change to a network,
engineers often care about the details of the path being used, for instance, in cases where the
change involves decommisioning an internal switch, eliminating internal congestion, or obeying a
security that mandates only certain devices (perhaps in certain countries) are used.

Single-snapshot Verification with NetKAT. NetKAT has regularly been used as a single-snapshot
specification and verification platform. To do so, one uses the techniques of the previous paragraphs
to encode the network of interest as a NetKAT expression Kj,;. Next, to specify a property, one adds
constraints to K¢, and constructs an equation or inequation. For example, to check that a particular
class of packets, say those satisfying predicate blocked, are not forwarded through the network, one
might check the equation [[blocked o Kpe; ]k = [0] k. To check that some packets satisfying reach
will be forwarded from A to C, one might check [[1loc = A o reach o Ky¢; o loc = C]lx # [0] k-

Change Validation with NetKAT. To our knowledge, NetKAT and its variants have only ever
been used for single-snapshot verification. However, we observe that due to the nature of its
equational specifications, NetKAT can validate the simplest kinds of changes—it can compare
subsets of the old, pre-change network to the new post-change network with an equation of the
form K. N subset = Kpos: N subset, using the intersection operator of KATch [Moeller et al. 2024].
More general change validation is out of reach for NetKAT. There is no general way to identify a
set of traces in the pre-change network, apply a transformation to them, and then check that all and
exactly the transformed traces appear as desired in the post-change network. As we demonstrate
via examples below, this capability is key to validating many types of changes.

3 Relational NetKAT

Relational NetKAT (RN) extends NetKAT with a new sublanguage for expressing trace relations
R. Such trace relations denote subsets of Trace X Trace and may be used to capture fine-grained
correspondences between traces that occur in a network before a change and traces that occur in a
network after a change. These trace relations may be included in NetKAT expressions using the
relational image operation K » R, which applies relation R to K yielding some new set of traces K’.
Trace relations enable a new, modular style of network specification—one focused on transforming
networks and comparing the transformations to desired specifications. This style is particularly
well-suited to verification of changes to networks.

Normally, to use RN to verify a change, a network operator will supply a pair of trace relations—
one to transform the pre-change network (R,,.) and one to transform the post-change network
(Rpost)- Given those two specifications, the RN system:

e translates the pre-change network into a NetKAT expression K,
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Al e }—fc}—{o
]

\—'—‘
add encryption
(a) Change path (b) Add encryption
—
add tunnel
block src.ip = 10.0.20.1
(c) Change firewall (d) Add tunnel

Fig. 2. Four network updates.

e translates the post-change network into a NetKAT expression K5, and
¢ implements a decision procedure for the specification Kj,,¢ > Ryre = Kposs > Rposs, Wwhere K> R
is the set of traces computed by finding the image of R applied to K.

When the second relation, Ry is the identity, we are left with the equation Kjre » Ryre = Kposz- In
this case, R, represents the engineer’s (possibly incorrect) beliefs about the change process, and
Kpre > Ryre specifies the expected impact of the change on the original network. On the other hand,
Kpost is the actual effect of the change. The goal is to uncover bugs by checking the engineer’s
beliefs against reality.

3.1 Trace Relations

To introduce and illustrate the use of trace relations in network change specifications, we provide a
series of examples before supplying a formal semantics.

Example: Specifying a Path Change. Consider a simple scenario, presented in Figure 2a, in which
a network engineer must take a switch (say, switch B) offline for maintenance to upgrade or replace
it. Prior to doing so, any existing traffic traversing B should instead be redirected along another
path, perhaps the one using switch C. A strong specification of such a change should include two
elements:

(1) Traces in the pre-change network that do not include B should stay the same in the post-
change network.

(2) Traces in the pre-change network that include B should instead use C in the post-change
network, but should otherwise stay the same.

This specification is easy to state and understand precisely because it refers to the traces from the
old network. If one attempted a single-snapshot specification of the property (i.e., a specification
that does not include direct reference to “the pre-change network”), one would effectively have to
enumerate all of the (possibly millions) of paths in the pre-change network by hand, or by some
other process, patching those paths by replacing B with C where necessary. Alternatively—and
this has been the modus operandi of past NetKAT verification efforts, which have not focused
on change validation—one checks weaker properties such as reachability. However, in industrial
practice, the stronger properties are needed to have confidence in the change. Hence, despite the
availability of in-house verification tools, much change checking has, somewhat surprisingly, been
done manually and at great cost in terms of human time and effort[Xu et al. 2024].

In RN, specifying and checking such changes is straightforward. To begin, consider part (1)
of the specification above, which demands that a subset of the network stay the same. Ironically,
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“staying the same” is amongst the most common components of our change specifications. Such
specifications are instances of the identity relation on traces, written Id(K), which relates every
trace t € [ K]k to itself. Hence, in this case, the first part of the specification may be written using
the following trace relation.

stay_the_same = Id(alltraces(loc # B))

To implement the second part of the specification, we must transform traces from using B to
using C instead. To this end, Relational NetKAT supplies DeleteSeg(K) to delete a segment matching
K and InsertSeg(K’) to add a segment matching K’. More precisely, DeleteSeg(K) relates all traces
in [K o dup o havoc] k to an “empty” trace?. Recall that the havoc relation leaves the relationship
between one packet and the next in a trace completely unconstrained. Hence, the “dup o havoc”
extension may be read as saying “and any other packet may come next” In our experience, when
writing specifications, one typically writes them in “chunks,” where one chunk does not constrain
the next; The DeleteSeg(K) (also InsertSeg(K')) combinator conveniently admits this style as the
following examples show.

Now that we have the combinators we need, changing a segment that uses B to one that uses
C is achieved via the relation DeleteSeg(loc « B) - InsertSeg(loc « C), which "concatenates"
an insertion after a deletion, giving us a replacement of one by the other. To extend these trace
relations from one-hop relations to full paths, one can concatenate the desired prefix and/or suffix.
Usually, we assume no loop in a desired network, hence part (2) of the change may be expressed in
its entirety as follows.

change_path = Id(alltraces) - DeleteSeg(loc « B) - InsertSeg(loc « C) - Id(alltraces)
With both parts (1) and (2) in hand, the full relation is constructed using a union.
fullchange = stay_the_same + change_path

To check this change, we simply apply fullchange to the pre-change network and compare the
result with the post-change network—that is, we verify the equation K, > fullchange = Kjos;.

Example: Encrypting payloads. Protocols such as IPsec will encrypt packet payloads to ensure
client privacy. One way to model encryption is to extend packets with an additional field encrypted,
set to 1 when the packet payload is encrypted and set to 0 when the packet payload is unencrypted.
Now, consider the scenario presented in Figure 2b, where a network operator adds encryption and
decryption protocols at the network endpoints. One might want to verify that packets traversing
internal network node B and C are encrypted after the change, but otherwise act similarly, following
similar paths, and with headers undisturbed.

Reasoning about such changes may be accomplished via the Map combinator, which is a gener-
alization of Id, used earlier. Map(PkR, K) applies packet relation PkR at each hop in every trace
in [K] x; Id(K) is an abbreviation for Map(1, K). In our case, relating any packet to its encrypted
counterpart is achieved by the packet relation (encrypted « 1). Since we wish packets be en-
crypted when traversing nodes B and C, we should restrict the relation so it only applies in those
locations: (loc = B+ loc = C) o (encrypted « 1). Elsewhere in the network, packets should be
unchanged: —(loc = B + loc = C) o 1. The desired transformation is the union of the two packet

2The "empty" trace is represented here as any length-1 trace.
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relations applied universally:

inside=loc =B+ loc=C

outside = —inside
encrypt_it = inside o (encrypted « 1)
cleartext = outside o 1

spec = Map(encrypt_it + cleartext, alltraces)

Example: Firewall. Firewalls are widely used in all kinds of networks. Common changes involve
adding, deleting, or modifying firewall policies. Figure 2c presents a network where a firewall is
placed at node B. The network administrator has decided to block all traffic with source IP address
10.0.20.1, due to uncertainty about whether such traffic is malicious. The goal is to verify that the
firewall rule is correctly enforced at node B, while ensuring that all other traffic remains unaffected.

Such changes can be specified using the Filter combinator. Whereas Map applies a packet relation
to every "hop" in a trace, Filter requires a particular packet relation hold at a specific point in a trace
relation. In this case, for each trace try, tr, from an element (¢ry, try) of the firewall path relation,
defined below. Such traces must all include a packet at node B with a src.ip # 10.0.20.1. Other
(try, try) pairs are excluded from firewall_path.

firewall_path = Id(alltraces) - Filter(loc = B - src.ip # 10.0.20.1) - Id(alltraces)

To include all other traces that do not pass through B (thereby excluding just those traces that do
pass through B but have src.ip = 10.0.20.1) we use the familiar identity relation:

stay_the_same = Id(alltraces(loc # B))

Combining stay_the_same and firewall_path, gives us the firewall update relation we desire: K¢ >
(stay_the_same + firewall_path) = Kpos:, which asserts that the post-change network behaves like
the pre-change network except for traffic passing through B, which is subject to the firewall rule.

Example: Tunneling. Figure 2d presents a system involving two corporate networks, one with
nodes A, B, C, and the other with nodes D, E, F. The internet I sits between the two. We will assume
that A, B, C use IP addresses identified by predicate net; and D, E, F use IP addresses identified
by predicate net,. In this example, the user makes a change that adds a tunnel between C and D.
The tunnel entry after C will add a new set of headers to every packet passing through it, with
dst.ip 128.112.0.0 (C’s destination IP). The tunnel exit prior to D will strip the header, revealing
the original header underneath. A similar transformation occurs in the opposite direction (D and
C) with IP 128.112.0.1 (D’s destination IP) used.

One of the limitations of NetKAT is that it demands all packets use the same set of headers
throughout the network (header fields cannot be pushed and popped arbitrarily). Still, we can
model a network that admits one extra layer of headers where needed by assuming all packets have
a second copy of each header field. We name the two copies dst.ip; and dst.ip, with dst.ip;
the inner header and dst. ip, the outer header. When dst. ip, is not in use, the field is set to 0.
With this set-up, relating packets moving through the tunnel is achieved via tunnel_change =

(loc=1 - net; - dst.ip, « 128.112.0.0) + % in the tunnel, headed to net2
(loc=1 - net; - dst.ip, « 128.112.0.1) % in the tunnel, headed to netl

The relations for (1) all traces that travel through the tunnel one from one network to the other
(net2net_traces), (2) all traces that remain in one network or the other, not using the tunnel
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Syntax:

R ::= Filter(PkR) | Map(PkR,K) | Delete(K) | Insert(K) | Ry - R, | RL+ R2 | R*
K:=---|K»R
Abbreviations:
Id(K) = Map(1,K)
DeleteSeg(K) = Delete(K o dup o havoc)

InsertSeg(K) = Insert(K o dup o havoc)
MapSeg(PkR, K) = Map(PkR, K) - Map(havoc, havoc)

Semantics:

[ Filter(PkR) | r = {(pk1, pk2) | (pki1, pk2) € [ PkR] pkr}
[Map(PkR, K))[Ir = {(pky -~ pkn,pki --- pky) | pky -+ pkn € [K]k,
Vi € [1,n].(pki, pk;) € [ PkR] pkr}
[ Delete(K) |r = {(pk1 -+ pkn,pk) | pk € Pk, pki -+ pky € [K]«}
[Insert(K) v = {(pk.pk1 -+ pkn) | pk € Pk,pky -+ pky € [K]x}
[Ri +Ro]lr = [Ri]lr U [R:]Ir

(pky -+ pknt -+ pkna, Py -+ pkiyy -+ phpp) |

[R: - Ro]lr = (pki -+ pkm, pki -+ pkpy) € [Ri]w,

(Pkn1 + - pkna, Py -+ phiyy) € [Re]r
Rz = U|[R”]]R, where R® = Filter(havoc), R™' =R"-R

n>0
[K>R]k ={tr' | tr € [K] (tr,tr’) € [R]r, |tr'] = 2}

Fig. 3. Syntax and Semantics of Trace Relations.

(other_traces), and (3) the overall specifcation (spec) are presented below.

net2net_traces = Id(alltraces) - MapSeg(tunnel_change, 1oc = I) - Id(alltraces)
other_traces = Id(alltraces(loc # I))

spec = netZnet_traces + other_traces

Summary. These examples, while idealized, illustrate a number of the (subjective) benefits of
this style of specification:

e Change specifications are clear: Specifications say what changes directly as a relation between
old and new, and say what does not change equally clearly.

e Specifications are compact: Specifications are usually proportional the size of a change rather
than proportional to the number of devices, forwarding rules, or paths in a network. Spec-
ifications for real changes in networks in our study in Section 5 are only slightly longer
than the idealized variants presented here, since most of the time, most of the network says
unchanged.
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—
compile AK)
— cross product splitting
(AE) | a)* A(K > R)
synchronization projection
compile A(R)
—

Fig. 4. Compilation process of Relational NetKAT

e Specifications are expressive: Using regular languages over trace relations and four simple
but expressive atomic primitives, we can encode a wide variety of change-validation proper-
ties—many of which cannot be captured in prior work [Xu et al. 2024].

e Specifications are compositional: Sub-regions of a network may be specified separately then
composed with specifications for other sub-regions.

e Specifications are modular: The specification need not be heavily “intermixed” with elements
that represent parts of the post-change (or pre-change) networks. The specification can be
defined separately from the network to which it is applied. A single specification could be
reused and applied to multiple networks, or parts of the same network over time, if similar
changes occur.

The formal syntax and semantics of trace relations, as well as some common abbreviations we
use, are summarized in Figure 3. While most of the semantics is unsurprising, there are a couple of
subtle technicalities to note. In particular, an element of a relation (¢ry, tr;) may contain a length-1
trace. For example, a filter is implemented as a pair of length-1 traces. When a relation R is applied
to a set of traces K, yielding a new set of traces, any remaining length-1 traces are excluded from
the result. Concatenation in the sublanguage is also subtly different: It eliminates one intermediate
packet rather than two, as in NetKAT.

4 Automata

The Relational NetKAT compiler architecture is presented in Figure 4 and proceeds as follows.

(1) The NetKAT expression K is compiled into a standard NetKAT automaton, denoted A (K).

(2) The Relational expression R is compiled into a NetKAT transducer, denoted A(R).

(3) These two automata are combined to form a transducer (A(R)|#(x))*, which captures the
synchronized behavior of K and R.

(4) Finally, the transducer (A(R)|a(xk))* is transformed into a projected automaton A (K » R)
that recognizes [[K > R] x by applying projection. While doing so, a key relational splitting
optimization decomposes relational transitions to reduce the state space.

We establish the correctness of this compilation process by showing that the behavior of the
final automaton A (K > R) aligns with the denotational semantics of K » R.

4.1 Automaton Model for NetKAT Expression K and Relation R

Our automata model for NetKAT expressions K are similar to prior work [Foster et al. 2015; Smolka
et al. 2015], following the Antimirov derivatives construction as used in work [Smolka et al. 2015]
to generate finite automata from NetKAT programs. Since our language equivalence decision
procedure for K requires one step of determinization, we also adopt the explicit state representation
from this line of work.

The key difference in our automata is that we unify the two different kinds of transitions: e-
transitions that lead to accepting states, and d-transitions that lead to non-final states into one
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unified transition A representing all of the cases. Using this A transition, we further give a different
definition of the transition relation (s, pko) =5 (sms pky), characterizing the language acceptance.

This unified A transition-based formulation and Antimirov derivatives construction make the
compilation process readily extensible to relational expressions R, enabling us to define a uniform
cross-product construction between automata for K and R in the subsequent steps.

NetKAT Automata. We begin by defining a general automaton model that captures the structure
needed to represent NetKAT programs.

DEFINITION 1. A NetKAT automaton is a tuple M = (S, So, S¢, A) where S is a finite set of states,
So C S is the set of start states, Sy C S is the set of final states, and A : S X S — 2PXPE is q transition
relation.

Unlike classical automata, where transitions depend solely on the current input symbol, network
devices operate on the entire packet and update it in place. Upon receiving a packet, a device inspects
and possibly modifies it before forwarding. To accurately model this behavior, each transition in a
NetKAT automaton involves a configuration pair (s, pk), consisting of a state and a packet.

To distinguish packets on different tapes in the relational setting, throughout this section we use
x and w to denote packets and traces on the NetKAT automaton tape, and y and z for those on the
other tape of the NetKAT transducer.

The transition relation of M is defined inductively over packet traces. A labeled transition

w
(50, %0) — (Sn, Xn)

indicates that, starting from state sy and input packet x, the automaton can process the trace w
and reach state s, with final packet x,,.

e Base case: (s, x9) = (50, x0)
e Inductive case: If (xg, x1) € A(so,s1) and (sq, x1) BN (sn, xn), then (sq, x9) o (Sn> Xn).
The language accepted by M is the set of input/output traces that begin from an initial state and
terminate in an accepting state:

L(M) = {xow | sy € So,S¢ € S, X0, xn € Pk.(50,x0) N (sf,xn)}-

Compilation of K. To compile a NetKAT expression K into an automaton, we adopt the Antimirov
derivative approach [Smolka et al. 2015], adapted to our explicit automaton model. Although this
construction yields a non-deterministic (i.e, the out transition of each state may not be disjoint)
automaton, it guarantees that the number of states is bounded by the syntactic length of the
expression I(K) + 1 (with proof in Appendix), a desirable property inherited from the derivative
framework [Antimirov 1996; Sakarovitch 2009]. The compilation process is straightforward and is
detailed in the appendix. We also formally prove its correctness:

THEOREM 4.1. For all NetKAT expressions K, let A(K) be the automaton constructed via the
Antimirov derivative. Then:
L(A(K)) = [K] k.

NetKAT Transducer. NetKAT transducers model the semantics of relational NetKAT programs
R, which operate on pairs of traces. Intuitively, a NetKAT transducer behaves like a two-tape
automaton, where each tape corresponds to a trace in the pair. Each state in the automaton is
implicitly associated with the current packet being processed on each tape.

In our syntax, we support four kinds of atomic relational constructs: Map(PkR, K) advances both
tapes simultaneously, Delete(K) advances only the left tape, Insert(K) advances only the right tape,
and Filter(PkR) without advancing either tape.
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To model the behavior of these constructs, the NetKAT transducer includes four basic transition
types, corresponding directly to the above operations:

DEFINITION 2. A NetKAT transducer is a tuple T = (S, Sy, Sf, As, Ar, Ag, Ag) where S is a finite
set of states, Sy C S is a set of start states, Sy C S is a set of final states, As : SXS — (Pkx Pk)x (PkX Pk)
is a synchronous transition relation, Ay : S X S — Pk X Pk is an asynchronous left transition relation,
AR : S X S — Pk X Pk is an asynchronous right transition relation, and Ag : S X S — Pk X Pk is an
epsilon transition relation.

Similar to NetKAT automaton M, the transition relation of T is defined inductively over pairs of
packet traces. A labeled transition of the form:

(w:z)
(SOa (x0> yo)) — (sn: (xnla ynz))

indicates that, starting from (xo, yo), the transducer produces the output traces w and z along a
path to state s, with final packets (x,,, yy,)-

(e€)
e Base case: (s, (x0, o)) — (s0, (%0, Yo))-

(w,z)
e Both tapes move: If ((xo, yo), (x1,y1)) € As(so,s1) and (s, (x1,y1)) — (S, (Xny> Yny))s
(x1w,y12)
then (so, (x0, Y0)) ———— (Sns (Xny» Yny))-

e First tape only: If (xo, x1) € Ar(so, 51) and (s1, (1, Yo)) o) (sn, (Xn;5 Yny ),
then (5o, (x0,90)) 5 (s, (i Yn,)).

e Second tape only: If (yo,y1) € Ar(So, s1) and (sy, (%0, y1)) (W—’Z>> (Sns (Xnys Yny))s
then (50, (%0, 90)) ——2 (s (ny n,))-

e No tape moves: If (xg, y9) € Ag(so,s1) and (s, (x0, Yo)) (W—’ZQ (Sns (Xnys Yny))s

(wz)
then (sO, (xO’ yO)) — (STD (xnls ynz))'
The language accepted by the NetKAT transducer T is then defined as the set of trace pairs
processed from a start state to an accepting state:

’ ’ (W’Z) ’ ’
L(T) = {(xw,yz) | s0 € So, 37 € S5, %, %", 4,y" € Pk.(s0, (x,y)) — (s, (x", ')}

Correctness of Compilation. Similar to the case for NetKAT expressions, we can ensure the
correctness of the NetKAT transducer with respect to the denotational semantics. The number
of states is again bounded by the syntactic length of the expression I(R) + 1. The full details of
compilation and proof is in the Appendix.

THEOREM 4.2. For all relational NetKAT expressions R, let A(R) be the transducer constructed via
the Antimirov derivative. Then:

L(A(R)) = [R]r.

4.2 Cross Product and Synchronization

Our goal in this section is to compile an automaton that faithfully captures the semantics of the
projection expression K > R. As an intermediate step, we construct the cross-product transducer
A(R)| k), which combines the behavior of the NetKAT automaton A(K) and the NetKAT
transducer A(R). We then eliminate all forms of asynchronous and e transitions from A(R)| A (k)
to form a synchronized version of the NetKAT transducer (A(R)|#(x))°. We break the compilation
process into two steps:
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(1) Cross Product: Construct the cross-product transducer A(R)|# (k) from A(K) and A(R)
by aligning transitions from A(K) with the first tape of A(R). The resulting transducer
A(R)| a(k) accepts the relation {(w,z) € A(R) | w € A(K)}.

(2) Synchronization: Eliminate all Ag, Ay, and A transitions to obtain the synchronized
transducer (A(R)|a(k))*, in which transitions occur simultaneously on both tapes. Note
that L((AR)|ak))®) # L(A(R)|ak)); however, they agree on the second tape of valid
NetKAT traces (length greater than 2):

{z| (w.2) € (AB)|aw))’. Izl 2 2} ={z | (w.2) € AR) |, |z| = 2}.

Cross Product Construction. Suppose we have NetKAT automaton A(K) = (Sk, Sko, Sk, A) that
accepts single traces, while the NetKAT transducer A(R) = (S, Sr0, Srf» As, AL, Ar, Ap) accepts
pairs of traces. The purpose of the cross-product A(R)|# (k) is to match every trace on the first
tape of A(R) to a valid trace accepted by A(K).

We define the cross-product transducer A(R)| k) = (Skrs Skros Skrf> Mg A7, Ag, A) as follows:

® Skr = Sk X Sy is the set of composite states.
® Skro = Sko X Syo is the set of initial state pairs.
® Skri = Sk X Syy is the set of accepting state pairs.

The transition relation is defined as follows:

e Synchronized transitions on both tapes:

A;((Sk, Sr); (S]’<5 S;)) = {((xh yl)a (X2, yz)) | (xh x2) € A(Sk, s]/c) A ((xl’xz)’ (yl; yz)) € AS(Sr, S;)}
e Transition on the first tape only:
Ai((Sk, sr)’ (S]/C, s},‘)) = {(xl’x2) | (xla x2) € A(Sk, s]/c) A (xla x2) € AL(sr’ S;)}
e Transition on the second tape only:

’

’ ’ A (Sr, S;.) lfsk =S
AR((sk>sr), (55> 57)) ={ R k

0 otherwise

e Transition on no tape:

Ag(sr,sy) i sg = s

0 otherwise

K (st ), (5 50) = {

That is, when the relational transition consumes a packet on the X tape, we synchronize it with
a corresponding transition in A(K). When the relational transition doesn’t consume on the X tape,
we keep the NetKAT state unchanged (i.e., sy = s;) and perform only the transition on NetKAT
transducer states.

Synchronization. After constructing the intermediate transducer A(R)| 4 k), we eliminate all
transitions involving Ag, Ar, and Ag, yielding a standard two-tape NetKAT transducer (A (R)| a(k))®
in which each transition consumes exactly one packet from both tapes. Formally, we refine
AR)| A k) from:

(Skrs Skro» Skrf» Ny AL AR, AL) - 1o (Skrs Skros Skrfs A, 0,0, 0).

where A represent the synchronized transition for the new transducer.
A key observation is that synchronization does not preserve the full trace language:

L((AR)|ax))®) # LIAR) | ax))-
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However, since the projection K > R only concerns the trace sequence on the second tape, we need
only preserve the second-tape behavior. That is, we require:

{z1 (w.2) € LA a(x))*), 2] = 2} = {z | (w, 2) € LAR) | a(x)), |2] = 2}
To achieve this, we apply a two-step strategy:

e Simulate right-only transitions: For every transition in A} that advances the second tape
while leaving the first unchanged, we replace it with a synchronized transition:

Asr(s1,52) = { (e, y1), (x1,42)) | (Y1, y2) € AR(si,s2)} .

This construction preserves the effect of the original right-only transition while achieving
synchronization by introducing a no-op (i.e., static) move on the first tape.

e c-Elimination: We compute the transitive closure of A; (transitions that move neither tape)
and A (transitions that move only the first tape). Using this closure, we propagate the effects
of these transitions into Ay and Agg, effectively incorporating all intermediate e-moves into
synchronized transitions. This process mirrors standard e-elimination in automata theory
and yields a fully synchronized transducer.

The resulting NetKAT transducer (A(R)|a(x))° is compatible with the projection operator
and preserves the desired second-tape behavior. Full algorithmic details of the synchronization
and e-elimination procedures are deferred to the appendix. We summarize the correctness of the
construction with the following theorem:

THEOREM 4.3. Let (A(R)|a(x))® be the synchronized NetKAT transducer constructed from the
cross-product and synchronization procedures. Then:

{z| (w2) € LUAR) | ax)")} = [K > R] k.

Once (A(R)|a(x))® is constructed, we apply standard reachability analysis to prune unreachable
states and transitions. This optimization is important for performance in practice, as shown in our
evaluation in Section 5, though we defer the technical details to the appendix.

4.3 Relational Splitting and Projection

The ultimate goal of this section is to project the NetKAT transducer (A(R)|#(k))°® into the final
form A(K » R), while avoiding state explosion.

High-Level Idea. Following the synchronization procedure, we obtain a NetKAT transducer
(A(R)| a(x))® where every transition consumes a pair of packets—one from each tape. Our objective
now is to project out the first tape X and extract the trace set from the second tape Y.

A naive approach to projection is to explicitly track the first-tape packet as part of the state.
That is, we construct a NetKAT automaton where the states are of the form (s, pk) and where
A((s,%), (s, x")) 2 {(g.y) : ((x, 1), (x",y")) € As(s,s’)}. Thus the configuration space of the
NetKAT transducer S X (Pk X Pk) is isomorphic to the configuration space of the NetKAT automaton
(S X Pk) X Pk, but in the NetKAT automaton the first packet in the configuration is part of the
explicit state rather than the symbolic state.

However, this strategy leads to an exponential blowup in the state space. For each automaton
state s, we would need to generate up to | Pk| copies to account for all possible packet values pk,
resulting in an infeasible number of states. For instance, even a packet with just 32-bit source and
destination IP fields would yield at least 2% distinct combinations—making equivalence-checking
impossible in practice.

A key observation is that, in practice, relational NetKAT programs typically induce only "small"
changes while preserving most of the structure at each transition. For example, suppose a NetKAT
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relation R is of the form Id(K) for some NetKAT expression K. In this case, we need not track the
entire packet state on the X tape, because it is always equal to the packet on the Y tape!

Thus, for this example, we can construct a NetKAT automaton that recognizes the projection of
the relation [[Id(K) || using a NetKAT transducer T with the same state space as A (Id(K)), and
with the transition relation

AGs,s") £ {(y ) | ((xy), (x',y)) € As(s,s'), x=y, X' =y}

What makes this optimization possible is that, in all transitions (s, (x1,41)) M (82, (x2,12))
of A(R), the value of x is completely determined by s and y. While this is not true for all NetKAT
transducers, we can always partition the transitions of A(R) into finitely many cases in which
the Y-tape value determines the X-tape value. Although the worst-case size of such an injective
partition (i.e., partitioning until y determines x) is O(|Pk|), our “small change” observation suggests
that the size of this partition is often small—in the case of Id(K), it has only one cell. The definition
below formalizes our intuition about efficiently projectable transducers.

DEFINITION 3 (EFFICIENTLY PROJECTABLE TRANSDUCER). Let T = (S, Sy, Sf, As, 0,0, 0) be a syn-
chronous NetKAT transducer. Its projection |T| = (S, S, S¢,A) onto the second tape is a NetKAT
automaton with the same state space, initial states, and final states as T, and where the transition
relation is defined as:

AGs,s") = {(3,y) | 3xx” € Ph((xy), (', y) € As(s,5")}.
We say that T is efficiently projectable if:
L(IT[) = {z | (w,2) € L(T)} .

Notice that L(|T|) 2 {z | (w,z) € L(T)} for any T, and that equality of the two sets holds only
in special cases. One case in which the a NetKAT transducer is efficiently projectable is when the y-
packet uniquely determines its corresponding x-packet. Under this assumption, each configuration
(s, (x,y)) of the original transducer is in one-to-one correspondence with (s, y) in the projected
automaton. From a bisimulation perspective, this yields a strong invariant:

(x2,92) Y2
Txy, x2 € Pk.(s1, (x1,y1)) —1 (52, (%2, 42)) &= (s1,41) — 1y (52, 42)-

However, in real-world settings, this uniqueness assumption is often too restrictive. Some
fields—such as VLAN tags, source ports, or other metadata—may be abstracted or ignored, meaning
y cannot fully determine x. Enforcing strict uniqueness in such cases would require explicitly
enumerating all values of these abstracted fields, leading to an exponential blowup of size 21,
where |f] is the length of hidden fields.

To avoid this explosion, we relax the uniqueness condition and introduce the notion of x-
bisimulation. The observation here is that for hidden fields, all of the different values associated
with them have identical behavior on the y-tape across all subsequent transitions. They are safe to
collapse even if multiple x values may map to the same y. We relax the uniqueness condition to y
uniquely determines a set of behaviourly equivalent values of x (with respect to the y-tape). Since
the state s and the y-tape remain observable after projection, we only need to consider bisimulation
of the x-tape for a fixed state s and y. This motivates the following definition.

DEFINITION 4 (X-BISIMULATION). For a synchronous NetKAT transducer T = (S, Sy, Sf, As, 0,0,0),
a relation x1 =,y x; is an x-bisimulation if:

e Forall x; =4 x5 and ((x1, 1), (x3,y")) € As(s,s"), there exists x4 such that ((x2,y), (x4,y")) €
As(s,s’) and x3 =gy x4.
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e Forall x; =5 4 x; and ((x2,y), (x4,y")) € As(s,s"), there exists x3 such that ((x1,y), (x3,y")) €
As(s,s") and x3 =g 4 x4.
We define the maximum x-bisimulation relation Rmax to be the union of all x-bisimulations.

If the y-packet determines a set of x-packets that are behaviorally indistinguishable on the y-tape,
then transitions in the original transducer involving (x, y) pairs can be faithfully simulated using
only y. That is, for all reachable configurations (x1, y;) at state s;, the original transducer makes a

transition
(x2,y2)
Fx1, x2 € Pk.(s1, (x1, 1)) — (52, (x2,y2))

if and only if the projected automaton makes a transition

(s1.y1) = (52, 2)-
This effectively means that the set of reachable configurations (s, (x, y)) is bisimilar to (s, y)—and
therefore, projection preserves the trace semantics.

We introduce the notion of bisimulation witnesses as a sufficient condition for bisimilarity of a
synchronous NetKAT transducer T and its projection |T|. A bisimulation witness for the transducer
T is a function B : S — 2Pk imply that there is a bisimulation relation ~ between T and |T|
defined by

(s, (xy) ~ (s.y) & s=s.y=y' and (x,y) € B(s)

DEFINITION 5 (BISIMULATION WITNESS). Let T = (S, So, Sr, As, 0, 0, 0) be a synchronous NetKAT

transducer. A function B : S — 2P*P¥ is g bisimulation witness if the following conditions holds:

(1) (Bisimulation Witness) The relation (x; =5, x3) £ ((x1,y) € B(s)) A ((x2,y) € B(s)) isa
x-bisimulation for tranducer T.

(2) (Domain coverage) For alls € S, B(s) 2 Uy es dom(A(s,s"))

(3) (Range coverage) For all s € S, B(s") 2 Uses range(A(s,s”))

This bisimulation witness B captures the observable behavior of the transducer at each state.
Condition (1) weakens the strict uniqueness requirement on x and replaces it with behavioral
equivalence: all x values compatible with the same y must exhibit indistinguishable behavior on
y-tape across transitions. Condition (2) ensures that B covers all source pairs involved in any
outgoing transition, while condition (3) propagates this property to target states, ensuring that the
image of any transition remains within the bisimulation witness.

Then we can conclude that this transducer is efficiently projectable if such a witness is found.

THEOREM 4.4 (CORRECTNESS OF PROJECTION). Let T = (S, So, S, As, 0,0,0) be a synchronous
NetKAT transducer. If there exists a bisimulation witness B, then T is efficiently projectable.

Relational Splitting. After defining the class of transducers that can be efficiently projected, the
next step is to transform a general (A(R)|#(k))°® transducer into one that belongs to this class.
The key challenge lies in discovering a bisimulation witness. However, the bisimulation witness
defined in the previous section may not exist for all transducers T. Therefore, we aim to split the
transducer by states or transitions until a bisimulation witness can be identified for every state s.

A natural approach is to compute the maximum bisimulation at each state and then split states
according to the equivalence classes of this relation. These equivalence classes form a bisimulation
witness for the resulting transducer, thereby ensuring that it is efficiently projectable. Moreover,
this approach yields a transducer with the minimal number of states after splitting. We describe
this method in the Appendix.

However, this approach is inefficient in practice, as computing the global bisimulation relation
is computationally expensive. Prior work [Fisler and Vardi 2002] has shown that computing
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the maximum bisimulation relation for a symbolic model can be more costly than verifying an
invariant for that model. This overhead becomes prohibitive when handling industrial networks
with thousands of devices.

To avoid this cost, we propose a "local" approach that computes equivalence classes on a per-
transition basis. Specifically, we check whether (x1,y) and (x,, y) reach the same (x’,y") in the
next state. This yields the following equivalence relation:

xEsyxe =0V ((ny), (3F)Y) € Ass)) &= ((xy), (x,1)) € Als,s")

It is straightforward to verify that this relation defines an x-bisimulation for transducer T. This local-
ized x-bisimulation enables us to generate bisimulation witnesses per transition. Our experiments in
Section 5 demonstrate that this approach yields a 2.5x speedup over the global bisimulation method.
We adopt this local splitting approach in the paper, and the resulting transducer construction based
on this equivalence relation is defined as follows:

Step 1: Transition-Based Partitioning. The first step is to partition each transition relation
As(s,s”) into a set of subrelations 7" such that each subrelation’s input pairs is indistinguishable
towards y-tape. i.e., for all (x1,y), (x2,y) € dom(r’),x’,y’ we have

(). (¢ y)) €r’ = ((x2y). (" y)) er

We do not prescribe a concrete algorithm for this partitioning, as efficient strategies may de-
pend heavily on the structure of the transition r. In principle, a naive partitioning can always be
achieved by enumerating all x values corresponding to each fixed y, although this may lead to
exponential blowup. In practice, more optimized approaches are often possible. For example, one
such strategy is discussed in Section 5, where we exploit the low-level BDD representation used in
our implementation to enable efficient symbolic partitioning.

Formally, we suppose that we have partition function P : § x § — 2(PFXPK)X(PkxPK) g ch that:

e For each pair of states (s,s”), each r € P(s,s”) satisfies a localized bisimulation condition
required for efficient projection. More precisely, for every r € P(s,s”), the following holds for
all (x1,y), (x2,y) € dom(r),x’,y’ we have

(1), (x".y) er &= ((x2y). (x.y)) €r

This condition ensures that all pairs (x, y) appearing as inputs to the transition relation r’
are indistinguishable towards the output at next states.
e The partition covers the transition relation:

U r|=A(s,s).

reP(s,s’)

Step 2: Bisimulation Witness Generation. The ultimate goal of splitting is to transform the
transducer into one that is efficiently projectable, with bisimulation witnesses serving as the
guarantee. In this step, we aim to assign each state s € S a set of bisimulation witnesses such that,
in the final split transducer, the states take the form (s, b), where the bisimulation witness of (s, b)

Pkx Pl
22

is b. Formally, we define the target function 8 : § — * as follows:

(s) {dom(r) | 3s" € S,r € P(s,s")}, ifs ¢Sy
s) =
{Pk x Pk}, ifs € S¢

The idea behind this construction is that for every non-final state s, and every transition r €
P(s,s’), there exists a domain-covering (one that satisfy property (2)) witness dom(r) at state
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(s,dom(r)). For final states, we assume without loss of generality® that there are no outgoing
transitions. Thus, domain coverage is not a concern, and we may safely assign B(s) to be the
singleton set Pk X Pk to ensure coverage for any incoming transition (i.e., range coverage).

Combined with the previous step of transition partitioning, this witness generation ensures that
in the final split transducer, each witness b at state (s, b) satisfies both condition (1) (bisimulation
witness) and condition (2) (domain coverage). In the next step, we will ensure condition (3) (range
coverage) through output restriction.

Step 3: State Splitting and Output Restriction. Using B(s), we now construct a new transducer
where states are paired with their bisimulation witness. Define the split transducer:

TP £ (sP,SP, sjj, AL, 0.0,0)

as follows:
o SP = {(s,b) |s€S,be B(s)}
o Sg N {(s0s l;) | so € So, bbe Z;(SO)]%
° = € € .
° i{ansi{t(if)]; r()ellltsi{)n: k o)

AL ((s1,b1), (52,b2)) 2 U ey erl Ly ebs)

by=dom(r)AreP(s1,s2)

1> 11>

The goal of this construction is that, attached to each state (s, b) after splitting, the packet relation
b serves as the bisimulation witness for that state, therefore an effecient projection is then doable.
As discussed above, without output restriction, the split transition would be:

NG ((s1,b1), (2, b)) = U r
by=dom(r)AreP(s1,s2)
In this form, the b in each state (s, b) satisfies condition (1) and condition (2). Now, we apply the
final output restriction step to ensure condition (3) (range coverage).

Although the output restriction prunes the output of each transition, it does not violate bisimu-
lation conditions (1) and (2). For condition (2), the filtered transition is a subset of the unfiltered
one, so domain coverage still holds. For condition (1), the key insight is this: because we adopt a
x-bisimulation relation that they are behavioural indistinguishable in terms of output transition
behavior, applying uniform truncation on their output transitions will preserve another uniform
output transition behavior, thus x-bisimulation is retained. We thus conclude with the following
theorem:

THEOREM 4.5 (CORRECTNESS OF SPLITTING). Let T = (S, S, Sr,As, 0,0, 0) be a synchronous
NetKAT transducer. Without loss of generality, we suppose that final states have no outgoing transitions.
Then the split transducer TP constructed as above satisfies:

o L(TP) =L(T)
o T? is in the class of efficiently projectable transducers.

Then we summarize all of the compilation pipeline to the projected automaton A(K » R) as:
AK>R) £ [((AR)|Ax))|

Having constructed the projected automaton A (K » R) from the pipeline, we obtain an automa-
ton of the form as a standard NetKAT automaton. This allows us to complete the verification
of relational specifications K; » Ry = K; » R,. To this end, we apply two standard procedures:

3This holds trivially for (A(R)| A(K))°, as shown in the appendix.
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determinization, followed by bisimulation checking. These procedures follow the same methodology
as prior works [Moeller et al. 2024; Smolka et al. 2015], and are deferred to the Appendix.

5 Evaluation

In this section, we describe the implementation of our Relational NetKAT compiler and compare
its performance against existing tools, such as Batfish and Rela, for verification tasks that these
other tools support. Our goal is to quantify the overhead of the more general approach of RN. We
also benchmark RN’s performance on tasks that are uniquely supported by RN and quantify the
value of our optimizations techniques. Our artifact is available at [Xu et al. 2025].

5.1 Implementation

Our implementation has approximately 3000 lines of OCaml code, includes the following key
components:

(1) A compiler that translates a NetKAT expression K and a Relational NetKAT expression R
into a NetKAT automaton A(K » R).

(2) An equivalence checker that checks the equivalence of two NetKAT automata.

(3) An interface for translating input/output formats of Batfish and Rela into our representation.

A(K » R) Compiler. We follow the compilation pipeline outlined in Section 4. At the lowest
level, we encode packets using binary representations and use Binary Decision Diagrams (BDDs)
for symbolic manipulation. Specifically, we use the MLBDD library, where each boolean variable
corresponds to the value of a particular field bit.

Since automaton transitions involve pairs such as (x,x”) and ((x,y), (x’,y")), we interleave the
bit positions of the four packets within the BDD variable ordering. Concretely, for each bit index k,
we assign positions 6k, 6k + 1, 6k + 2, and 6k + 3 to the bits of x, x’, y, and y’ respectively, while
reserving 6k + 4 and 6k + 5 for BDD composition. This encoding is especially efficient for common
cases like identity relations or slight field modifications.

After BDD encoding, we implement the functions delta_k, delta_r, and delta_kr to construct
the automata A(K), A(R), and (A(R)|ak))* respectively. We apply a "reachability pruning"
optimization to prune unreachable states before performing relational splitting, reducing the
number of (y, x) pairs that must be considered. With this reachability optimization, we are able to
do an emptiness check using the function emptiness_check at this phase.

Next, we implement a naive but effective BDD-based splitting strategy to ensure that each y value
is associated only with indistinguishable x values. To achieve this, we reorder the BDD variable
layout from (x, x’,y,y’) —ie., 6k, 6k +1,6k+2,6k+3 —to (y,x,y’,x") —ie., 6k+1, 6k +3, 6k, 6k + 2.
This reordering enables us to analyze, for each y, whether multiple x values appear before the next
y variable is encountered in the BDD. If so, we split the BDD branches; otherwise, we retain the
structure. Recursively applying this process yields a partition satisfying the criteria for splitting.

We then combine this splitting logic with the algorithms described in Section 4, implement-
ing the procedures generate_all_transition and simplify_all_transition for relational
splitting and projection. Finally, we support automaton determinization through the function
determinization, completing the compilation pipeline.

Equivalence Checker. The equivalence checker and counter-example generation follows the
bisimulation-based approach introduced by Moeller et al. [2024]. Specifically, we implement the
bisimulation procedure via the function bisim, which symbolically compares two deterministic
automata for language equivalence. To generate counterexamples when equivalence fails, we
compile the symmetric difference of two NetKAT expressions e; @ e, (in our case A(K; > Ry) @
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Fig. 5. Arithmetic runtime comparison between Rela and our system across three verification goals

A(K; » Ry)), implemented by the function symmetric_difference. This process enables us to
identify traces accepted by one expression but not the other.

Interfaces for Batfish and Rela. To interface with Batfish and Rela, the first step is to encode
packet structures into BDDs. We adopt two different encoding strategies for packet fields. For
source/destination IP addresses and ports, we use a bit-aligned binary encoding that matches their
natural layout in packets. This representation supports efficient prefix matching (e.g., for IP prefixes
such as 10.20.1.0/24) and is well-suited to forwarding table lookups. For other fields such as
loc = Aor typ = ssh, we assign unique identifiers to each field value and encode them into
binary form. This hybrid approach avoids wasting bits on unused values while preserving efficient
predicate evaluation. Combined, these strategies enable us to implement backends compatible with
both Batfish and Rela.

For Batfish, RN consumes its output as input. Batfish ingests network configuration and exposes
the network’s routing and topology information using higher-level APIs. We use the routes() API
to extract routing tables for each node, and layer3Edges() API to extract the network’s topology.
Interface-level properties and access control lists are retrieved using interfaceProperties()
and namedStructures() APIs. IP tunnel information is extracted using ipsecEdges() API Since
Batfish currently lacks APIs that yield firewall and NAT, we directly parse configuration files to
extract these features as needed.

For Rela, Relational NetKAT acts as a natural extension of its IR. In particular, Rela-style queries
of the form P; » Ry = P, » R; are translated into Relational NetKAT expressions. We compile path
sets P; and P,—representing networks annotated with IP constraints—into pre- and post-network
NetKAT expressions K. Similarly, we promote path relations R; and R; to relational programs.

5.2 Comparison to Rela

Rela [Xu et al. 2024] is a relational network verification tool for verifying path changes in networks
that do not transform packets. It models the network as a set of DAGs annotated with source
and destination IP constraints. As shown earlier, our language subsumes the syntax of Rela’s
intermediate representation, enabling a direct comparison.

Xu et al. [2024] released a dataset with pre- and post-network paths from Alibaba’s global
backbone. Because the data is not accompanied by specific verification goals, we consider three
common verification goals based on the list of changes in the paper’s appendix:
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Table 1. Runtime of Batfish and RN on Example Batfish Benchmarks

Forwarding Change Validation
Function | Batfish (s) | Ours (s)
trac}f rg_li,tte 11 (1)2‘11(3) (1)2;11 Hybrid Cloud Network
reachabity ’ ' Function | Batfish (s) | Ours (s)
differential 1 0.396 1.218
. traceroute 1 0.399 40.657
reachability 2 0.254 0.875
. . traceroute 2 0.230 3.406
differential 2 0.246 0.391
traceroute 3 0.222 2.797
traceroute 2 0.429 0.140
traceroute 4 0.380 2.281
traceroute 3 0.372 0.344
- traceroute 5 0.212 2.828
reachability 3 0.377 1.046 reachabilitv 1 0.224 7 656
differential 3 |  0.378 1.125 P z 0275 TG
reachability 4 | 0.234 0.782 verag : : =X
differential 4 0.398 0.625
Average 0.414 0.782(1.8x)

e Preserve: Verify equivalence between the original and updated DAGs.

e Node Deletion: Randomly delete one node and its associated traffic, then verify equivalence.

e Forwarding Path Change: Redirect traffic through a randomly selected node to another
random node (e.g., changing the path A — B — C to A — D — (), and verify equivalence.

The dataset includes 2460 devices and 21,112 traffic DAGs. We randomly selected 2000 DAGs and
applied each verification tasks above. As shown in Figure 5, our system is approximately 50-60
times slower than Rela. This slowdown stems from two factors:

e We use BDDs to encode location and IP headers, resulting in heavier symbolic manipulation.
In contrast, Rela uses a single-character symbol per location.

e Our verification relies on symbolic automata due to the large packet space. Symbolic transi-
tions are not necessarily disjoint, requiring O(n) checks for disjointness, whereas regular
automata alphabets are disjoint and allow O(log n) disjointness checks.

Despite the slowdown, our system exhibits acceptable performance (sub-second validation time).
We deem that RN’s slower relative performance is worthwhile given its support for richer trace
relations and stronger guarantees for change types that both tools support. Unlike Rela, which
considers concrete packets, RN verifies changes over extremely large packet spaces (> 232 packets).

5.3 Comparison to Batfish

Batfish is a widely used network verification tool that supports a broad range of single-snapshot
verification tasks, along with limited forms of relational verification. To compare RN with Batfish,
we replicate forwarding analyses from two tutorial examples: Forwarding Change Validation and
Hybrid Cloud Network. These examples demonstrate Batfish’s capabilities in relational verification
and its scalability on realistic network topologies. The first example features a network with 9
devices and approximately 8.5k lines of JSON-based routing configuration. The second example
involves a more complex network with 17 devices and over 200k lines of routing policies.

Our system successfully reproduces a wide range of Batfish-supported queries. In particular, we
focus on data plane analysis queries which are:

(1) reachability — Determines whether packets satisfying header constraints H (e.g., dst.ip=
10.0.0.1) can traverse a path matching path constraints P (e.g., from A to C via B).
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Table 2. Relational Verification Queries Only Supported by Relational NetKAT

Hybrid Cloud Network

Verification Ours (s) Specification

NAT unchanged 1 | 26.152 Kpre v Id(alltraces(src.ip # NAT _ip - dst.ip # NAT _ip))
= Kpost » Id(alltraces(src.ip # NAT _ip - dst.ip # NAT _ip))
NAT unchanged 2 | 21.141 Kpre » Id((~(NAT _entry) o dup)™)
~Kpost > 1d((~(NAT _entry) o dup)")
NAT changed 1 7.469 Kpost » Id(loc = outer - dst.ip = public_ip
oalltraces o loc = inner) = )
Tunneling 1 28.687 Kpre= Kpost
Tunneling 2 20.515 Kpre » Map(encrypt_it + cleartext, alltraces) = Kpos;
Average 20.792

(2) traceroute - Similar to reachability, but without user-defined path constraints; only the
start location and header constraint are specified.

(3) differentialReachability — Verifies whether packets satisfying H reach a path P in one
snapshot but are filtered in another.

We specify general reachability in relational NetKAT as:
reachability = Filter(1)Delete(alltrace)Insert( havoc)Filter(1)

This relation maps all traces in the network into its input/output pair, where the verification task
is: is formulated as:

Kpre > reachability = Kpos: » reachability

The traceroute query focuses the reachability query with a header constraint H and a
path constraint P. We can express these constraints using a packet predicate Py and NetKAT
expression K, respectively. For instance, in the Forwarding Change Validation example, one
goal is to ensure no flow traverses "corel" after a configuration change. This corresponds to
K, = alltrace o loc < corel o dup o alltrace. A constraint like dst.ip= "54.191.42.182" from
the Hybrid Cloud Network is similarly encoded as a packet predicate. We define a strengthened
reachability as:

reachability’ = Filter(Py)Delete(K,)Insert( havoc)Filter(1)
This can be used for input-output reachability queries, but to extract full trace sets (as in Batfish’s

traceroute), we define:
traceroute = Filter(P,)Map(1,K,)

Finally, differential reachability across network snapshots is formulated as:
Kpre > reachability’ = Kpog > reachability’

This strengthens Batfish’s version by enforcing output and end-location equivalence.

Table 1 shows the performance of Batfish and RN on the forwarding analyses in the two exam-
ples. While RN shows comparable performance to Batfish for most analyses, it has much higher
runtime for some, where BDD and initialization overhead dominate. For instance, in the hybrid
cloud benchmark, Traceroute 1 takes over 40s in our system due to symbolic automata and BDD
initialization for over 200k lines of routing policies, whereas Batfish completes parsing in under 1s.
We cache automata computations using hash tables to reduce recomputation costs.
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Fig. 6. Comparison of verification times under different levels of reachability pruning. TIMEOUT > 1000s.

5.4 Relational Verification for Networks with Transformations

Our system supports relational verification tasks that no current tool (including Batfish and Rela)
can express. Table 2 lists several such relational queries and our system’s performance for them on
the same network as the Hybrid Cloud example above. The queries use NAT (Network Address
Translation) and tunneling.

NAT queries. NAT is often deployed to bridge internal (private) and external (public) networks.
It rewrites packet headers such that internal hosts appear under public IPs. In our experiment, the
network operator disables the NAT entry to isolate the internal network from external traffic.

In networks with NAT, it is hard to get the exact change as changes of header also may change the
forwarding path, leading to another path which is only able to be described with certain knowledge
on the forwarding tables. We handle NAT-related queries by separately verifying the unchanged
and affected portions of the network. In NAT unchanged 1, we confirm that traces not containing
NAT IPs remain unaffected, and in NAT unchanged 2, we confirm that traces not going through
NAT entries remain unaffected. While NAT changed 1 checks that without NAT, traces coming
from outside cannot reach a private destination with a public NAT ip.

Tunneling queries. The tunneling queries analyze changes from a flat, untunneled network to a
tunneled configuration, as discussed in Section 3. Our system encodes symbolic equivalence between
encrypted and decrypted behaviors. Tunneling 1 verifies equivalence when all IP tunnels connect
adjacent nodes, which is the original example’s IPSec tunneling setting. In contrast, Tunneling 2
encrypts traffic at randomly selectively nodes, and verifies the correspondence of the decrypted
and encrypted network.

5.5 Impact of Optimizations

Our verification engine has two primary optimizations: reachability pruning and a custom splitting
algorithm. We now evaluate the performance impact of these optimizations.

Reachability Pruning. This optimization is applied after composing the (A(R)|#(x))° and be-
fore using the splitting algorithm. It prunes unreachable configurations thereby improving the
efficiency of splitting. We denote different levels of reachability pruning using R(e0), R(1), and
R(0). R(o0) computes all reachable pairs exhaustively; R(0) applies no pruning at all, assuming
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Task Base L(0) L(32) L(64) Naive
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Fig. 7. Comparison of verification times under different splitting strategies. TIMEOUT > 1000s.
that all configurations are reachable, and R(1) is the overapproximation obtained from R(0) doing
one step of reachability pruning.

As shown in Figure 6, disabling reachability pruning R(0) yields faster performance in the
PrESERVE and DELETE tasks due to reduced preprocessing overhead. In these cases, the packet
relation is typically simple (e.g., 1 or loc = B) and can be projected efficiently.

However, for CHANGE tasks that involve nontrivial path changes (e.g., from A — C — Bto
A — D — B), pruning becomes essential. Without pruning, R(0) loses track of the (x, y) relation
after leaving A, and R(1) loses it after passing through C or D on the way to B. Consequently, even
if transitions are identity mappings (i.e., x = x” Ay = y’), the splitting procedure on ((x,y), (x’,y"))
must consider an exponential number of x values due to lack of constraint on (x, y), leading to
timeouts (> 1000s).

Splitting Algorithm. A key technical contribution of this paper is the novel splitting algorithm we
propose for efficient automata projection. We compare its performance against several alternatives.
Our design uses the observation that if the y-tape (i.e., output projection) can uniquely determine a
group of x-tape values that are indistinguishable with respect to the next output transition, then
we can significantly reduce the number of splits required. However, it is also possible to generate a
correct projected automaton using either (1) a naive splitting strategy that enumerates all possible
x values or (2) a more aggressive strategy where y uniquely determines x.

To evaluate these alternatives, we test each method on automata augmented with unused “hidden”
field lengths of 0, 32, and 64 bits. These fields do not affect our current implementation (serving as
a baseline, labeled Base), but they do impact the strategies that require y to determine x, which we
denote as L(0), L(32), and L(64). The naive strategy simply times out (i.e., exceeds 1000 seconds)
on all test cases and is labeled Naive, as shown in Figure 7.

Our implementation employs hash-consing to memoize BDD splits, avoiding redundant com-
putations when the same BDD structure appears. Even so, this overhead is only small when the
hidden length is small (e.g., 0 or 32). However, as the hidden field length increases (e.g., to 64 bits),
the splitting overhead becomes exponential, resulting in timeouts (>1000s).

This experiment confirms that our splitting algorithm is both efficient and necessary for practical
automata construction in the presence of large packet spaces.

Maximum vs. Localized Bisimulation. As discussed in Section 4, we adopt a localized approach
that computes the equivalence classes of (x,y) only up to the next transition. This approach is
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Fig. 8. Runtime of Maximum bisimulation.

significantly more efficient than the maximum bisimulation method because it avoids computing
the full global bisimilarity relation and allows us to proceed with automata splitting immediately.
The complete algorithm for the global approach is provided in the Appendix. Figure 8 presents the
experimental results, showing an overall speedup of more than 2.2x across all cases.

5.6 Other Optimizations

We experimented with and implemented several engineering optimizations that yielded significant
performance improvements in compiling and manipulating NetKAT transducers. Due to a limit of
space and the fact that these optimizations are not at the core of our theory, we put the experiments
and verifications for these optimization results in our artifact.

Hash Table Memoization. We memoized results in key procedures such as derivatives, cross-
product construction, and BDD splitting, which are often invoked repeatedly with identical inputs.
This optimization led to a more than 100X speedup on the Rela benchmark.

Efficient Routing Table Encoding. While different routing encodings ultimately yield the same
BDDs, compilation time varies significantly. We replaced the naive sequential insertion of routing
entries with a binary tree organization sorted by destination IPs. This change reduced compile time
in the Hybrid Cloud Network case from 30+ minutes to under 60 seconds.

Implicit vs. Explicit Location Encoding. We opted to encode location information within the BDDs
rather than using explicit NetKAT states. This implicit representation yields a more than 4-5x
speedup over the explicit alternative on the Rela benchmark.

Set-Based Union Operator. Rather than encoding expressions like e; + ez +. .. + e, as nested binary
unions, we implemented a set-based construction {ej, ey, . . ., e,}. This ensures that semantically
equivalent expressions are also syntactically equivalent, reducing automata state explosion from
factorial to linear size in some cases.

Direct Automata Compilation from JSON.. We explored bypassing NetKAT parsing altogether
by compiling automata directly from Rela’s JSON output. However, due to the need for explicit
location encoding (since Antimirov derivatives don’t apply to the JSON format), this approach
incurred slowdown compared to our current method.

Future Optimizations. The following optimizations could lead to further performance gains but
are beyond the current engineering scope of our work:

e MLBDD Library Enhancements. Although MLBDD is the best OCaml BDD library we
found, it still lacks several key features: 1) Dynamic variable reordering, 2) Garbage collection,
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3) Parallelization. These improvements could significantly enhance compilation scalability
and runtime.

e Reimplementation in C/C++. OCaml, while productive and concise, lacks high-performance
transducer libraries and runtime features available in C/C++. Rewriting our core compiler
in C/C++ could unlock further performance improvements, especially for low-level data
structures and BDD manipulations.

6 Related Work

As mentioned earlier, there has been much past work on single-snapshot network verification
[Backes et al. 2019; Beckett et al. 2017; Fogel et al. 2015; Jayaraman et al. 2019; Kakarla et al. 2020;
Kazemian et al. 2012; Khurshid et al. 2013; Mai et al. 2011; Zeng et al. 2014] but little work aside
from Rela [Xu et al. 2024] (discussed in the introduction) on multi-snapshot change validation.

Algorithms for Automata Construction. There are two main approaches to constructing NetKAT
automata. One line of work [Smolka et al. 2015] adopts Antimirov partial derivatives [Antimirov
1996]; the other line of work [Foster et al. 2015; Moeller et al. 2024] is based on Brzozowski derivatives
[Brzozowski 1964]. The essential distinction is that Antimirov derivatives yield nondeterministic
automata (NFA), while Brzozowski derivatives construct deterministic automata (DFA) directly.

We adopt Antimirov derivatives for three key reasons: 1) The number of Antimirov derivatives
is bounded by the syntactic size of the expression, yielding compact NFAs. 2) Even if our A(K)
and A(R) constructions appear deterministic, their cross-product automaton after synchronization
is not guaranteed to remain deterministic. And 3) prior work [Pous 2015] finds Antimirov-based
symbolic algorithms to be more efficient than Brzozowski-based alternatives for Kleene Alge-
bra with Tests (KAT). Thus, we construct automata using Antimirov derivatives and then apply
determinization in a separate step.

There are also several choices when it comes to deciding equivalence between symbolic automata
and/or KAT terms [Bonchi and Pous 2013; D’Antoni and Veanes 2014, 2017; Pous 2015]. Our
implementation adopts the latest bisimulation-based symbolic approach used in the KATch system
[Moeller et al. 2024]. However, our implementation deviates from KATch in other ways. While
KATch uses Forwarding Decision Diagrams (FDDs) to encode transition relations [Moeller et al.
2024; Smolka et al. 2015], we used Binary Decision Diagrams (BDDs) for two reasons. First, while
FDDs are optimized for binary transition relations over packet pairs (x, x”), Relational NetKAT uses
two-tape transitions of the form ((x, y), (x’,y’)), which we were not able to represent efficiently
with FDDs, especially when reordering is needed during splitting. Second, FDDs are designed
to handle atomic tests such as f = v, and updates like f <« v efficiently, but have no compact
representation for richer constructs like havoc, which show up often in our change specifications.

7 Conclusion

Relational NetKAT (RN) is a compositional language for specifying a wide range of network changes,
including updates to forwarding paths and modifications to packet-processing behavior such as
tunnels, NATs, and firewall rules. These changes are expressed as trace relations, mapping traces
in the pre-change network to those in the post-change network. To verify compliance with such
specifications, RN compiles trace relations into NetKAT transducers and applies them to NetKAT
automatons of both pre- and post-network. To avoid potential blowup in packet space, we design
a relational splitting technique that exploits the observation that real-world changes are usually
“small” Our OCaml implementation [Xu et al. 2025] and case studies show that RN captures a wide
range of realistic network updates and enables efficient verification at industrial scale.
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Data-Availability Statement

The companion artifact [Xu et al. 2025] includes the ocaml code.
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Fig. 9. Topology of Hybrid Cloud Network of Batfish

A Appendix
A.1 Batfish Topology
A.2 Full construction of NetKAT and Relational NeKAT automata

To construct the automaton A(K) for a NetKAT expression K, we define the automaton as a tuple
(S, So, Sf, A), where:

e S C 2KU1{el: The set of states consists of sets of NetKAT expressions, where K denotes the
set of all NetKAT expressions. In practice, only residual expressions generated during the

input processing of K are used. The symbol € denotes the empty expression, indicating the
end of processing.

e Sy = {K}: The initial state consists of the original NetKAT expression.

o Sy = {e}: The final state corresponds to the fully consumed expression, represented by the
singleton set {e}.

Transition Function Compilation. The transition function A is computed using Antimirov deriva-

tives, which decompose expressions into manageable components for constructing automata
transitions. Specifically:

o & : K — 2K%K gplits an expression K into two parts: the first part contains no occurrences
of dup, while the second part begins with dup, i.e., it takes the form dup K’.
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Fig. 10. Topology of Forwarding Change Validation of Batfish

* 5 :K— 2K extracts the components of K that are free of dup, facilitating transitions where
dup does not influence the output.

These derivatives are defined inductively as follows:
e 5¢ Pkr = {Pkr}
e 5 (Ki+Ky) =6 K1 VS Ko
(] 5; (K1 OKz) :5ZK1 5;](2
o 55 (K*) = U8 (K), where

50 () = {1}, " (K) = 8" (K) - 8 (K)

k
e S dup=0
Similarly, the § derivative is defined as:
e 5 Pkr=10

[ ] 5k (Kl +K2) = 5k Kl Usk Kz

® 5 (K10Ky) = {(Ki1, Ki20K2) | (Ki1, Ki2) € Ok KiPU{(K[ oKy, Kap) | K € O Ky A (K21, Kz2) €
Ok Kz}

o 5 (K*) = {(Ko 0 K1, Kz 0 K*) | Ky € 85 K A (K, K) € 8 K}

o & dup = {(1,dup)}

Using these derivatives, the transition function is compiled as:
e A (Ki,K;) = U {(x,x)|xx" € [K] ]}
(Kl dup Ky) €8x Ky
e AKie)= U {(xx)lxx" € [K']x}
K'e3¢ K
e A, K)=Aee=0
With these definitions, the automaton A(K) is fully specified as (S, So, S¢, A).
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A.2.1 NetKAT Transducer Construction. The construction of A(R) for a relational expression R
follows a structured approach inspired by Antimirov derivatives. Let R = R U {e X €}, and define
the transducer (S, S, Sf, As, Ar, AR, Ag) as follows:

e S, C 2RV{exel; States represent residual expressions after processing input.
e Sy = {R}: The initial state corresponds to the full relational expression.
e Sr = {e X €}: The final state indicates that the expression has been fully processed.

Transition Function Compilation. The transition function A for relational transducer includes
three components:

e Ag: Handles transitions of the form Map(PkR, K).
e A;: Handles transitions of the form Delete(K).

e Ag: Handles transitions of the form Insert(K).

e Ap: Handles transitions of the form Filter(PkR).

To compute these transitions, we use Antimirov derivatives for relational expressions. The
derivatives are defined as follows:

e §: R — 2R gplits an expression R into two parts: the first part contains the next operation
(one of Filter(PkR), Delete(K), Insert(K) or Map(PkR, K)), and the second part represents
the residual pair of traces.

e 5¢ : R — 2R determines whether an expression can evaluate to emptiness.

Definitions of Derivatives. The derivatives are computed as follows. Note that the we have Ag as
epsilon transition explicitly in our A(R) components. Therefore, we don’t hurry to calculate the
transitive closure of Ag at this step.

For &:

o ¢ Filter(PkR) = {Filter(PkR)}
e 57 Delete(K) = {Delete(K;) | Ky € 6; K}
o 57 Insert(K) = {Insert(Ky) | Ki € 5 K}
e 57 Map(PkR,K) = {Map(PkR,K;) | K; € 57 K}
o 5,6 (R1 +R2) = 5f R U 5f R,
[ ] (Sre (R1 Rz) =5fR1 55R2
o O¢ (R*) = {Filter(havoc)}
For 6:

e 5, Filter(PkR) = {}

e J, Delete(K) = {(Delete(K,), Delete(K>)) | (K1, K3) € 6k K}

e §, Insert(K) = {(Insert(Ky), Insert(K3)) | (K1, K3) € 6 K}

o 8, Map(PkR,K) = {(Map(PkR K;), Map(PkR,K)) | (K1, K) € & K}

o 6r (R1 +R2) = 5,« Rl U6r Rg

® 5, (RiRy) = {(Ri1,Ri2 - Ro) | (Ri1,Ri2) € 6 Ri} U{(R],Ry) | R} € 65 Ry}
® 5 (R") ={(Ri,R, - R*) | (R, Rz) € 6, R}U{(R',R") | R' € 67 R}

Transition Case Analysis. The transitions for Ag, A, Ag, and Ag are defined as follows:

® As (R, Ry) = U {(e,y), (", y")I(xx",yy')) € [Map(PkR, R}) | r}
(Map(PkR,R,),R;) €5, Ry
® As (R (exe)) = U {(x,y), (", y")|(xx",yy")) € [Map(PkR R') [ r}

Map(PkR.R')€5¢ R
e As ((ex€),R)=As ((exe), (exe) =0

® AL (Ri,Rp) = U {(x,x)|(xx",y)) € [ Delete(R}) ] r}
(Delete(R}),Rz) €6, Ry
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* AL (R (exe)) = U {(x, x")(xx",y)) € [ Delete(R) | r}
Delete(R') eS¢ R

e Ap ((exe€),R)=As ((exe),(exe)=0

® AR (Ri,Re) = U {(w. y)I(x.yy") € [Insert(R)) | r}
(Insert(R}),R2) €6, Ry
* Ar (R (e x¢€)) = U {(w. y)I(x.yy") € [Insert(R") g}

Insert(R’)€ds R
® AR ((e X €),R) =Ag ((eX€),(exe) =0

e Ap (R, Ry) = U {(x.y)(x,y)) € [[Filter(PkR) |}
(Filter(PkR),R;) €8, R

eArRiexe)= U {(oy)lCoy) € [Filter(PKR)]}
Filter(PkR) €8¢ R

e Ar ((exe€),R)=Ag ((exe),(exe) =0
The transducer A(R) is thus fully constructed as (S, So, Sy, As, AL, Ag, Ap).

A.2.2  Proof of Correctness. Next, we demonstrate that our derivative method is correct.

THEOREM A.1. For the intermediate & and &, used in the construction of A(K), we have:

[Klk= (J [Klkelklcv |J [K1«

(K1,Kz) €8; K K'ed K

Proor. We prove this theorem by induction on the structure of K.

e Case Pkr:
Since & Pkr = 0 and &; Pkr = {Pkr}, we have:

[[Pkr]]K =Qu [[Pkr]]K

e Case K; + K;:
By induction we have:

[[K1]]K = U [[Kn]]K o I[Klz]]K U U [[Kll]]K

(K11,K12) €k Ki Kiedy K

[K:]x = U [Ka1 ]k o [Kz2llx U U [ ]x

(K21,K22) €k K K} €8¢ Ky
Since
O (K1 +Kp) = 8 Ky U 6 Ko
5; (K1 +K2) = 5; KU 5; K,
Thus
[[K1 + KZ]]K =

14:33

[Kilx Y [K:Dx

- U [Ki1] & o [Kiz]x U U [K{lx

(K11,K12) €6k Ki K{E(’)‘Z K

U U [Ka1]x o [Ke2]x U U 1K1

(K21,K22) €k K2 Kjed5 Kz
- U IKkelglkv |
(K{,K;) €k (Ki+K) K’e8¢ (Ki+K»)

[K]x
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e Case K; o K;:
By induction we have:

[[K1]]K = U [[Kn]]K o I[Klz]]K U U [[Kll]]K

(K11.K12) €6k Ky K{es¢ K

[Kz]x = U [Ko1llx o [Kao]lx U U [K]x

(K21,K22) €k K> K;e8¢ K,
Since
O (K1 0Kp) = {(Ki1, Ki2 0 K2) | (K11, K12) € 6 K1}
U{(K] o K31, K22) | K| € 6 K1 A (Ka1,K32) € Ok K
5; (K1 ] Kg) = (SZ K1 o (SZ K2
Thus
[Ki o K]k = [Ki]x o [K2]x

([Ku ]k o [Krelw) o [Kellk U () ([K{DK) © [Ke]l&

(K11,K12) €k K K{E(’)'f< K

= U [Ki1llx o [Kiz o Kz ]|k

(K11,K12) €k Ki

v dKloeC | I[Kalkelkelku | [K10

K{es; Ky (K21,K322) €0k K, Kjed; K,
= U [Ki1]x o [Kiz o K2 ]Ik Y
(K11.K12) €8¢ K, Kl'€5; KiA(Kz1,K22) €6k Kz
[K7 o K]k o [Kz2]lx U U [Ki o K;]x)

K|e8¢ KyAK}eSE Ky

e Case K*: By induction we have

[Klk=  |J [Klcelklcy |J KT«

(K1.Kz) €6 K K'esE K
Using induction over i, we compute:
[Klk=6" v ) J ¢ U [KeKlke[KoK 7 ]k)
(K1,Kz) €8 K 0<j<i-1 K'E&Z(j) %
(1) Casei=0.

[K°Tx = [1]x =[5 ®)]xu0
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(2) Casei=1i+1
[K' ]k = [K" 1k o [K]x
= 5 (K) o [K]x
v J U ¢ U IKeKilkelK oK 7 K]k)

(Ki.Kz) €0k K 0<J<I=1 reseld)

= 5w | IKlkelklku | [KT0

(K1,K2) €6k K K’es¢ K

v U (U U KoKk Ik oK )

(K1Ky) b K 0SJSi-2 greseld) g

= Se(i) (K) U U U [K o Ki]k o [Kz]lx)

(K1,K3) €6k KKleaz(i—l) K

v U (U U KoKk Ik oK )

(KiKp) €8 K 0<j<i=2 prggel) ¢
= sPwvu ) U U IKeKlkolK oK ]x)
(K1,K») €8 K 0<j<i—1 K'ea,i“') K

Since
O (K*) = {(Ko o K1, Kz 0 K*) | Ko € 6 K A (K, K3) € 6 K}

5 (K =) 8 (k) where 8¢ (K) = {1} and 67"V (K) = 67" (K) 0 5 (K)

Thus

[K*Dx = Uk«

= U wu ) U ¢ U IKeKlkeo KoK k)

(Ki.Kz) €0k K 0]<i=1 grgsel) g

= 8¢ (KU g [K o Ki]x o [Kz 0 K ]k
K'e8 (K*)A(Ki.Kz) €8k K

o Case dup:
Since 6x dup = {(1, dup)} and ; dup = 0, we have:

[duplx = [dup]lx U O
Thus, the theorem is proved. m]

THEOREM A.2. ForallK € K, suppose A(K) is the automaton constructed by the algorithm above.
Then, for this A(K), we have:

(K, x0) —> (€, xp) & xow € [K]x

Proor. We prove the theorem by induction on the length of w.

e Base case 1: w = €. Since K # ¢ and [K]x only contains traces with length > 2, thus w = €
is not possible.
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e Base case 2: w = x;.
— Necessary direction: In this case, we have:

X
(30, X0) — (€> x1)
Since sy = K, we can conclude that xox; € |J [K']x € [K]k
K'est K

- Sufficient direction: If xyx; € [K]k, then xox; € |J [K’']x for only 8. generate
K'e5¢ K

length 2 traces.

For this case, since AK e = |J [K']k, we directly have:
K'e5¢ K

(K’ X()) i) (6’ xl)

o Inductive step: w = x;w’, where x; is the first symbol of w and w’ is the remaining string.
By construction, the transition A is defined as:

- A (K, Kp) = U (K 1x
(K{,dup Kz) €8x Ki

- A (K’ 6) = o %Je K[[K/]]K

From Theorem A.1, we know:
IKlk= | [Klkelklcv | IK]x
(Ki,Kz) €8 K K’es¢ K
Here, K; and K’ contain no dup, and K, = dup K, for some K.
— Necessary direction: If (K, x;) oy (e,xp), then there exists K, = dup K, such that
(K}, x1) — (€,%,) and (x0, %) € A (K,K).

For this case, xyx; € U [Ki]k, and the automaton transitions to state K, with
(Kydup K})e8i K
input x;. By induction, x;w € [K; ] . Thus, xox;w € U [Killk o [dup K;]x <

(Ky,dup K}) €8 K
[K]k, proving the case.
- Sufficient direction: If xox;w € [K]x, thenxox; € [Ki ]k, x1w € [K; ]k, and (Ki, dupK;) €
Sk K by trace length classification.
By induction, we have: (K, x;) N (€, xn).
By the definition of A, we have:

(K, x0) S (K3, x1)
Thus

(K, x0) =5 (&, %)

Hence, the case is proven.

THEOREM A.3. For the intermediate 8, and ¢ used in the construction of A(R), we have:

[Rle= () [Rlz-[RIzV |J [R]x

(R1,R;) €5, R R'e8€ R

Proor. We prove this theorem by induction on the structure of R.
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e Case Filter(PkR):
Since 6, Filter(PkR) = {} and ¢ Filter(PkR) = {Filter(PkR)}, we have:

[ Filter(PkR) | r = @ U [ Filter(PkR) || .
e Case Map(PkR, K), Delete(K), and Insert(K):
Since &, R = 0 and 8¢ R = {R}, we have:
[RIr =[R]r V0.
e Case R; + Ry, and R; - Ry:

Follows the same proof as Theorem A.1.

e Case R™:
Note that [R*][g = U[R"]]r, where R® = Filter(havoc), R™!=R"-R
nx0

And that

- 8¢ (R*) = {Filter(havoc)}

= 6 (R) ={(R,R: - R') | (R, R;) € 6, R} U{(R",R") | R € 6] R}
Follows the same induction process in Theorem A.1, it is easy to show

[R' ] = U [Ri]r - [R:]&

(Ri.Ry) €8, R
while [R°]|z = [ Filter(havoc) ]| z. Therefore, this case is proved.

Thus, the theorem is proved. O

THEOREM A.4. For allR € R, suppose A(R) is the transducer constructed by the algorithm above.
Then, for this A(R), we have:

(w2) ’o
(R (x,y) — (eX¢€ (x,y) & (xw,y2) € [R]r.
Proor. We prove the theorem by induction.

. . 2) .
e Necessary direction: If (R, (x,y)) <W—Z> (eXxe€, (x',y")), then there are four cases to consider:
(1) Case 1:The inductive step involves a Ag transition. Besides, we have w = x;w’ and z = y; 2’

such that either:

MR = | (e (I ) € [Map(PRR R e)
(Map(PkR.R}).R;) €5, Ry

or

As (R (e x€)) = U {(e,y), (X", y)I(xx",yy)) € [Map(PkR R') ] r}
Map(PkRR") €8¢ R

— If the next state is R,, by induction we have there exists x1, y;, w’, z’ such that:
(1w, 412") € [Re]k-
(xox1, yoy1) € [[Map(PkR,R') ] g

Thus:
(x0x1w, Yoy12”) = (x0x1, yoy1) - (xyw’, y12")
€ [Map(PkR,R) [ r - [Ro]lr
C (Rl
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— If the next state is € X €, then:
(x0x1, Yoy1) € U [R]r < [R]r
ReSE R
proving the case.
(2) Case 2,3 and 4: The inductive step involves a Ag , A or Ap transition. The reasoning is
identical to Case 1.

e Sufficient direction: If (xw, yz) € [[R]|g, we prove this by induction on the sum of lengths
of w and z. Since:

[R]x = U [Ri]x - [Re]r U U [R 1=
(RuRy) €6, R R3¢ R

we analyze the following cases:

(1) Case 1: (xw,yz) € U [R']&-
R'eés R

then we have (R, (x,y)) (W—ZQ (e X € (x',y")) for all the Ag, Ag, AL or Ag.
(2) Case 2: (xw,yz) € [Ri]r - [Rz]r, where Ry = Map(PkR,R}) and (R, R;) € &, R.
Suppose w = x;w’ and z = y;z’. Then:
(xx1,yy1) € [Ri]lr,  (eaw’, 112") € [Re]r-

We directly have

R (x.9) 5 Ry, (0, 1)).

By induction we have:

(w.2') L
(Ry, (x1,41)) = (exe (x,y)).
Hence:
(wsz) o
(Rz, (x,y)) — (e X € (x",y)).

(3) Case 3: (xw,yz) € [Ri]lr - [R:]]r, where Ry = Insert(K), Ry = Delete(K) or R; =
Filter(PkR). The reasoning is similar to Case 2.

]

THEOREM A.5 (SOUNDNESS OF AUTOMATA). For A(K) and A(R) induced by K and R, we have:
L(AK)) = [K]x and L(A(R)) = [R]r-

Proor. This follows directly from the theorems above. O

A.3 Number of States

We begin by defining the length functions /(K) and I(R), which serve as upper bounds on the number
of distinct states in the automata generated from NetKAT and Relational NetKAT expressions using
the derivative-based construction.

NetKAT Expression Length [(K): We define a syntactic length function /(K) on NetKAT ex-
pressions to provide a loose upper bound on the number of states generated during automaton
construction. The definition is as follows:

e I(PkR) =1

° l(K] +K2) = l(Kl) + l(Kg) +1
o I(Ki - Kz) = I(Ky) +1(Kz) + 1
o [(K*)=I(K)+1
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o [(dup) =2
Note that we assign [(dup) = 2 by convention, since in our derivative-based construction, we treat
dup as syntactic sugar for the expression dup - 1. Although this convention may be unconventional,
it suffices for the purpose of showing that the number of automaton states is bounded by the
structural size of the expression.
Relational NetKAT Expression Length [(R):
e [(Filter(PkR)) = 2
e [(Delete(K)) =I1(K) +1
o [(Insert(K)) =I(K) +1
o [(Map(PkR,K)) = I(K) + 2
° l(Rl +R2) = l(R1) + l(Rg) +1
o I(Ry-Rp) =I(R) +1(Rp) +1
o [(R*)=1(R)+1
We write E(K) and E(R) to denote the sets of derivative expressions (i.e., states) generated by
the derivative construction for K and R, respectively.
We also define the following normalization conventions:

eoK=K, e€Xe-R=R
We now prove bounds on the size of the state space generated.
THEOREM A.6. For all NetKAT expressions K, we have:
|E(K)| < I(K)+1

Proor. By structural induction on K:

e Case PkR: E(K) = {PkR, €}, so the bound holds: 2 < 1+1.
e Case dup: E(K) = {dup, 1, €}, also satisfying the bound.
e Case K = Kj + K;: By inductive hypothesis,

|E(K)| < |[E(K) |+ |E(Ky)| < I(Ky) +1+1(Ky)+1=1(K)+1
e Case K = K; - Ky: From the derivative semantics,

E(K) € E(Ky) - {Kz} U E(Kp)

Hence,
|E(K)| < |E(Ky)| + [E(Kp)| < I(Ky) +1(Kp) +2 = 1(K) +1
e Case K =K'":
E(K) C E(¢') - {K""} U {e}
Thus,
|E(K)| < [E(K)|+1<I(K')+2=1(K)+1
This completes the inductive proof. O

THEOREM A.7. For all relational NetKAT expressions R, we have:
[E(R)| < I(R)+1

Proor. We proceed by structural induction on R.

e Case R = Filter(PkR): The derivative yields at most two expressions: the filter itself and e.
So |E(R)| £ 2 = I(R), which satisfies the bound.
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e Case R = Delete(K): The set of derivatives satisfies:
E(R) C {Delete(K’) | K’ € E(K)} U {e X €}
Thus,
[ER)| < |[E(K)|+1<I(K)+1+1=(I(K)+1)+1

Since I(R) = I(K) + 1, thus we get the proof.
e Case R = Insert(K) or R = Map(PkR, K): Same argument as for delete.
e Case R=R; +Ry, R=R; - Ry or R=R’": Same as Theorem A.6

Hence the bound |E(R)| < I(R) + 1 holds in all cases. O

A.4 Cross Product and Synchronization Construction

The construction of the intermediate cross-product transducer A (R)| & (k) = (Skr> Skro» Skrf> A A7, Ajy AL),
derived from the NetKAT automaton A(K) = (Sk, Sko, Skf> A) and the NetKAT transducer A(R) =

(S, Sro, Srps Ns, AL, Ag, Ag), has been described in Section 4. We now describe the synchronization

phase in detail and explain how we eliminate unsynchronized transitions to obtain a standard
two-tape transducer.

Transition Functions. The goal is to construct a synchronized transition function Ag that simulates
the effects of A;z’ Ai, and A% using only transitions that advance both tapes. To achieve this, we
define two auxiliary transition sets:

¢ Right-only transition simulation:

Asr(s1,52) = {((en, y1), (x1,92)) | (Y1,y2) € Ag(se,s2)}

This set simulates second-tape-only transitions by fixing the first-tape packet and moving the
second-tape packet. This yields a transition that is synchronized syntactically, even though
the first tape logically remains unchanged.

We then define the extended synchronized transition set as:

AISR = A_IS U Asr
e Left-only and € transition simulation:
Arg(sy,s;) = ((x1,91), (x2, 1)) | (x1,%2) € A'L(Sl,sz)
’ U ((x1,91), (x1, 1)) | (x1,51) € Af(s1,52)

This captures both first-tape-only transitions and € transitions. Since neither advances the
second tape, we fix the second-tape component while applying transformations or identity
steps to the first tape.

Explanation.

e The set A, augments the base synchronized transition set A§ by incorporating simulated
right-only moves. These transitions effectively allow the second tape to move forward while
syntactically advancing both tapes.

e The set Apg models silent transitions where only the first tape moves or neither tape moves.
These transitions must be eliminated through standard e-closure procedures.

Transitive Closure of A, and A} Transitions. To properly simulate sequences of A transitions,
we compute their transitive closure:

AJp(s:9) = {((xy). (x.y)}
ALg (s155) = {(Gx1,9), (s, ) | 3oz (G, 9, (e ) € Ap(s152) A (R, (¥0,)) € Arp(sas )}
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AZE(SI’SZ) = U AiE(sl,Sz)
i>0

*

Lp» We define the final synchronized transition

Composite Transition Function. Using Ag, and A
function A§ as follows:

e For an initial state sy € So:

Fs1, 2. ((x0, Yo), (x1, 1)) € A} p(s0,51)
A5(s0,83) = 4 ((x0,Y0), (x3,y3)) | A ((x1,91), (x2,Y2)) € Agp(si, s2)
A ((x2,42), (x3,y3)) € Ajp(s2,3)

e For all other states sy ¢ Skro:

Fs1. ((x0, Yo), (x1,Y1)) € Agp((so, 1) }
A ((x1, 1), (x2,92)) € App(s1,52)

This composite transition function replaces all unsynchronized transitions with semantically
equivalent synchronized ones. As shown in the synchronization theorem, this ensures that the
projected trace language on the second tape is preserved exactly, which suffices for relational
verification.

A(so, 52) = {((XO, Yo), (x2,Y2))

A.5 Proof of Correctness of Composition

In this section, we prove the correctness of the composition and synchronization.

THEOREM A.8 (CORRECTNESS OF Agp). ((x1,Y1), (%2, Y2)) € Agp ((Sk15Sr1), (Sk2, Sr2)) if and only
if one of the following conditions holds:

(1) (k1 31) = (st 02) and (501 G y) =5 (5 (2 92))

(2) st = s and (501, (x1,91) ™ (52, (2, 2))

Proor. From the definition of A,:
Agro ((sks5r), (55557)) = {((x1,y1)s (2, y2)) | (x1,%2) € A (s, 5) A ((x1,%2), (Y1,Y2)) € As (sr,57)}

U{( (1, 1), (x2,92)) | sk = s A ((x1,41), (x2,92)) € Ag (sr,5,) }-
By case analysis of the above definition, we can directly verify the two conditions stated in the
theorem. Thus, the proof is complete. O

THEOREM A.9 (CORRECTNESS OF A} ). ((x1,Y1), (Xn+1, Yn+1)) € A% ((Sk1>5r1)s (Sk(nt1)s Sr(n41)))s

if and only if there exists w, such that:
w (we)
(Sk1,%1) — (Sk(n+1),xn+1) and (s, (xhyl)) — (Sr(n+1), (xn+1syn+1))-
Proor. We only need to show that
(X, y), (xn11,Y)) € AT ((Sk1>871)s (Sk(n+1)s Sr(n4+1))) if and only if there exists w such that:
w (w,e)
(Sk1,x1) — (Sk(n+1)axn+1) and (s, (x1, y)) — (sr(n+1)a (Xn+1, y))

e Necessary Direction: We prove this claim by induction on (x1, xp+1) € A]p ((Sk1,5r1)s (Sk(n+1)s Sr(n+1)))-
— Base Case: n = 0.
For n = 0, we have:

((x1,y), (x1,y)) € AﬁE ((sk1, 81 (Sk1871))-
On the other hand:

€ (e,€)
(sk1,%1) — (skx1) and (51, (x41,4)) — (501, (x1,1)).
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Thus the claim holds for the base case.
— Inductive Step: Assume the claim holds for n’. We prove it for n = n’ + 1.
By definition:
ATE (s1.53) = {((x1, 1), (x3,9)) | Tsz. X2, ((x1,9), (x2,9)) € ATp (s1,52) A((x2, 1), (x3,Y)) € ALE (52.53)}
Suppose:
((x1, y)’ (Xn41, y)) € Azzl ((sk1>5r1)5 (sk(n+1)» 3r(n+l)))-
Then there exist sk, Sy, X,y such that:
((x1,9), (xn,y)) € AL ((Sk1, 1), (Skns Srn))
And
((%n, y), (xn41, 1Y) € ALE ((Skns Srn)s (Sk(ne1)s Sr(n1)))-
By the induction hypothesis, there exists w” such that:

w (w,€)
(sk1,x1) — (Sknoxp)  and  (sp1, (x1,Y)) — (Spn> (X0, Y)).
From ((xn,Y), (Xn+1,Y)) € ALg ((Skn> Srn); (Sk(n+1)> Sr(n+1))), We know either:

Xn+ (xXn+1,€)
(Skn> Xn) -5 (sk(n+1),xn+1) and  (Syn, (Xp, y)) =5 (sr(n+1): (Xn+1, y))

or

(e€)
Skn = Sk(n+1) and x, =xp4; and (srna (xna y)) — (Sr(n+1): (xns y))

Combining these, let w = w’xy41 in the first case and w = w’ in the second case. Then:

w (w,e)
(Sk1,x1) — (Sk(n+1),xn+1) and  (s;1, (x1,y)) — (Sr(n+1), (Xn+1,1))-

Thus, the claim holds for the necessary direction.
e Sufficient Direction:

We prove this claim by induction on (s1, (x1,)) (W—’i) (Sr(ne1)> (Xn41,9))-
(e.€)
- Base Case: (51, (x1,y)) — (51, (X1, 9))-
For w = ¢, we have:
€
(Sk15 1) — (Sk1,X1)
On the other hand:
((X1, y)’ (x1> y)) € A%E ((skb Srl), (skl’ Srl))'

Thus the claim holds for the base case.
— Inductive Step:
Suppose there exists w such that:

(w,e)
(5k1,X1) — (Sk(ns1)s Xns1)  and (5,1, (X1, 7)) — (Sr(ns1)> (Xne1, Y))-

We do induction on (s,1, (x1,7)) (W—’€>) (Sr(n+1)> (Xn41,y)). Then there are two cases:

Xn+1 (xXn+1,€)
(Skns Xn) = (Sk(n+1)> X(n+1))  aNd  (Spn, (X Y))  — (Sr(ns1), (X(ne1)> Y))-

or
(e€)
(Skn’ xn) _e) (Skm xn) and (Srn’ (xn: y)) — (Sr(n+1), (xn: y))

By the induction hypothesis:
((x1, y)> (xn, y)) € AZE ((s1>8r1)> (Skns Srn))-
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From both two cases, we know:

(G, y), (xne1,Y)) € ALe ((Skns Srn)s (Sk(n+1)s Sr(n+1)))-
Hence:
((xn, ), (ene1> 9)) € ATE' ((Sk1s 1), (Sk(nat)s Sr(ne1)))-
This completes the sufficient direction.
Thus, the theorem is proven. o
THEOREM A.10 (ComPOSITION). Let A(K) = (Sk, Sk, Sk s A), A(R) = (Sr, Sro, Srf> As, AL, Ar, Ap),
and generates a synchronized transducer (A(R)| a(k))* = (Skrs Skros Skrf> A%, 0, 0, 0). then for start

state s € Sko and sro € Sy, and all tape string z with lengthn > 1,
we have for (A(R)|ax))*:

T, (550,510 (K02 40)) o3 (St Srn)s (s Yn))
if and only if for A(K) and A(R):

w (w,z)
Iw,  (sko,X0) — (Skn.xn) and  (sr0, (X0, Y0)) — (Srn. (Xn Yn))-
Proor. We prove both directions of the equivalence.
e Necessary Direction:

We prove by induction on the sequence ((skos $r0), (X0, Yo)) (W—’Z>) ((Skns Srn)s (Xns Yn))-
— Base Case: n=1.
For the transition:

(x1.y1)
(skros (%0, 30)) =" (k1. 871), (x1,91)),
by the definition of Ag,:

A ((sk0 $r0) (Sk1s 571)) = { (X0, Yo), (x1, 1)) | Is14, S70s Sp45 S71» Such that:
(0, x0) € Ap,y ((5k055r0)> (S Sr0))s (0, Y0)s (X1, Y1) € Agro ((Sigs S10)> (Skps Sr1))s
(xi> xl) € Altrl ((3]21’3;1)’ (skbsrl))}'

Applying Theorem A.8 for Ayyo and Theorem A.9 for A, ,
Wi ’ ’

(1) (skOa xO) — (skO’ xo),
(w.€) ’ 7 L
(2) (SVO! (x09 yO)) B (sr()! (x05 yo))9
’ / w2 ’ /
(3) (skoa x()) — (sklsxl)’
’ ’ ’ (Wz,y ) ’ ’ ’
@) (570 (<o) =" ()45 (X7 97)),

7’ /7 w3
(5) (skl’xl) — (skl’ xl)a

, Sy (ws€)
(6) (574 (x1,471)) — (sr1, (x1,91)).
Thus, the concatenated string w = w;wyws satisfies:

there exist wy, wa, w3 such that:

w (W,yl)
(Sk0s X0) — (sk1,x1)  and  (sp0, (%0, Y0)) — (sr1, (x1,Y1)).

— Inductive Step: Suppose the claim holds for n = m. We prove it forn = m + 1.
For the transition:

(xn+ sYn+ )
(ks Srm)s (s Yn)) =" ((Sk(ne1)s Sr(ne1))s (Xnas Ynsr))s
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by the same reasoning as the base case, there exists w such that:

(W, Yn+1)
(Skn> Xn) l) (sk(n+1),xn+1) and (s, (X, yn)) = (sr(n+1); (xn+1syn+1))~

Concatenating this result with the inductive hypothesis for ((sko, sr0), (X0, Yo)) (oot ) ()

((Skns Srn)s (Xns Yn)), we obtain the desired result ww’ for n = m + 1.
o Sufficient Direction: We prove this by induction on n.
- Base Case:n = 1.
Suppose there exists w such that:

(w,y1)
(Sko,xo)l> (sk1,x1)  and  (sy0, (X0, Yo)) = (sr1, (x1,11)).

. . . . (x1,91)
Decompose w into wy, wy, w3 as in the necessary direction, then (sgro, (x0,70)) —

((sk15r1), (X1, 41))-
- Inductive Step: Assume n = m + 1. By the inductive hypothesis, we know:

(1) (Sk0, %0) — (Skm> Xm)»
@) (500 50, 90)) 5 (S G Yo)-

Now decompose w into three parts wy, wy, and ws, corresponding to the intermediate
transitions:

Wi
(1) (skO, xO) — (skm: xm)s
(wi,y1+:ym)
(2) (er’ (X(), y())) 1_> (srm, (xm: ym)),
)
(3) (skm: xm) - (Skm’, xm')s
(w2,yn) ,
(4) (srms (Xm, Ym)) = (Srmes (X7, Yn)),
W
(5) (Skms Xmr) — (Skns Xn),
(ws.€)
(6) (srms (XmrsYn)) = (Srns (Xns Yn))-
Here, w; corresponds to a A} transition, and wj corresponds to a Ag, transition. By the
inductive hypothesis, for wy, there exists:

(k705 (%0:90)) 3" ((Stms Srm)s (Xims Yrm)).-

Combining this result with the transitions for w, and ws, we conclude that:

(5kr0> (%0 Y0)) — ((Skms $rn)s (X Yn))-
]

THEOREM A.11. Let (A(R)|a(k))® be the synchronized transducer constructed from the cross-
product and synchronization procedures. Then:

{o]| (o) € LUAR|ax)*)} = [K > R]k
Proor. This follows directly from Theorem A.10. O

A.6 Reachability Optimization
We define a reachability optimization over T = (Sk,, Skr0, Skrf> A, 0, 0, 0). Let Reach be a function
of the type S — 2F**Pk defined as follows:

e Reachy(s) = {(x.9) | s = 50}
o Reachii1(s) ={(x,y) | Ix", ¢y, ", (x",y'), (x,y)) € As’" s A (x',y’) € Reach;(s")}
® Reach(s) = J Reach;(s)
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THEOREM A.12. For an transducer T = (S, So, S¢, As, 0,0, 0), let:

NE“M(s,5') = {((x,y), (¥, y)) | (x,y) € Reach(s) A ((x,y), (x',y)) € A§(s,5)}.

Then, for the transducer T™**" = (S, Sy, S, A", 0,0,0), we have L(T) = L(T"%h).

PRroOF. We prove the equivalence of L(T) and L(T"¢").

e Necessary Direction: L(T7¢%") C L(T) By definition, A’(s,s’) C A(s,s’), so every trace in
Treach is also a valid trace in T. Hence, L(T"¢*") C L(T).
e Sufficient Direction: L(T) C L(T"¢%") Suppose in T, from the start state s, there is a trace:

(X1 X, Y1.--Yn)
(SO’ (Xo, yO)) — (Sn, (Xn, yn))

By definition of Reach, Vi, (x;, y;) € Reach;(s;). Thus:
((xi, Y2), (X1, Yin1)) € A5 (s3, 5041),

which means the same trace exists in T7¢%"_ Therefore, L(T) C L(T"¢%h).

Combining both directions, we conclude that L(T) = L(T"¢%h), O

A.7 Projection
THEOREM A.13 (CORRECTNESS OF PROJECTION). Let T = (S, S, Sf, As, 0,0, 0) be a synchronous
NetKAT transducer. If there exists a bisimulation witness B, then T is efficiently projectable.

ProoF. Suppose the bisimulation witness function we found for T is B of the type S — Pk X Pk.
Then we prove the theorem by induction on the length n of the string u and v (their length are
guaranteed to be equal since the transducer is synchronized).

e Base Case: n = 1. By definition:

1As] (s.s") ={(y. ") | (x,9). (x". 1)) € As (s,5")}.

Thus, (yo,y1) € |As]| (s,s’) if and only if there exist xo, x; such that:

((x0.y0): (x1,91)) € As (s.5").

e Inductive Step: Assume the result holds for n = k, and prove it for n = k + 1. For n = k,
there exist xg, x1, . . ., Xx such that:

(%1 Xp, Y1 - Yk )

(0, (%0, o)) — (k> (k> i),

if and only if:

Y1Y2.-- Yk
(50 Yo) = (St Yr)-

— Sufficient Direction: If there exists x;,; and si,; such that:
(%t Yk)s (Xk+1, Yka1)) € As (ks Sk+1)
then by definition:
(Yks Yr+1) € [As] (ks Ska1)-
Thus

Y1Y2---Yk+1
(s0,50) = = (Sk+1> Yks1)-
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— Necessary Direction: If:

(Yr> Y1) € |As| (S, Ske1)-

then there exist x;, x¢+1 such that:

((xpo Uk)s (Xkt1 Yre1)) € As (Sk, Skr1)-

By condition (2), we have bisimulation witness B summarizing the input:

(x yi) € B(sk).
By the inductive hypothesis and condition (3), we have bisimulation witness B summarizing
the output:

(X i) € B(sk)
Finally, by condition (1), we deduce there exists x]'c " such that:

((er> Ui)s (Xpy 1 Yrs1)) € As (ks Ske1)s
Thus:

(X1 XK X, 1 Y1+ Yk Ykt1)
(so, (xo, yo)) ki (Sk+1; (x]ICH, yk+1)),

This completes the proof. O

A.8 Partition

Before we prove the correctness of our partitioning strategy, we begin with a structural property
of the transducer (A(R)|a(k))° constructed from a NetKAT expression K and relation R.

THEOREM A.14. For the transducer (A(R)|ax))* constructed from K and R, its unique final state
is (€, € X €), and there are no outgoing transitions from this state.

Proor. The synchronized transducer (A(R)|#(x))* has the form
(ﬂ(R) |ﬂ(K))s = (Sa SO’ Sf: AS> (ba 0’ (Z))s

where the final state set is

Sp =Sk XSg={(e,e xe)}.
By construction of A(K) and A(R), both the state ¢ in A(K) and the state € X € in A(R) have
no outgoing transitions. Therefore, the product state (¢, € x €) in (A(R)|#(k))° has no outgoing
transitions either. This establishes the result. With or without the reachability optimization doesn’t
affect this proof. O

Now are ready for the proof of partition.

THEOREM A.15 (CORRECTNESS OF SPLITTING). Let T = (S, Sy, Sr, As, 0,0, 0) be a synchronous
NetKAT transducer. Without loss of generality, we suppose that final states have no outgoing transitions.
Then the split automaton TP = (SP, sP, S?, A‘g, 0,0,0) constructed as above satisfies:

Proor. We first prove that L(T?) = L(T).

Sufficient Direction: (L(T?) C L(T)) This follows directly from construction. For all ry, ry, we
have:

Aé’((sl,bl), (s2,b2)) C As(s1,52),
so every trace in T? is also a trace in T.

Necessary Direction: (L(T) C L(T?)) By definition of our witness function, all of the states that
have no outgoing transition will be witnessed by {Pk x Pk}. Therefore, after splitting, all sy € S¢
will be resulting in the state (sy, {Pk X Pk}).

We proceed by induction on the length n of all traces ends up in a final state sy € S¢.
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e Base case (n = 1): The trace has the form:

X1,

( )
(80, (x0, Y0)) A (s1, (x1,4y1)) and s; € Sp

Since the partition covers the entire relation:

L 7 =nasos),

r’ €P(s,51)

there exists some by such that (xo, o) € by and (so, by) € S,. Also, since the final state has no
outgoing transitions, it is tagged as Pk X Pk, which does not prune the output. Therefore, we
have:

(50, b0). (0, 90)) 8" (51, Pk PR, (31, 1))

e Inductive step (n = m + 1): By induction, suppose the trace

(xz--»xm+1,y2---ym+1)

((s1,b1), (x1,91)) — ((sm+1, Pk X Pk), (Xm+1, Ym+1)) and sp41 € S
exists in ((A(R)|a(x))®)?, with (x1, 1) € by. Consider the transition

(X1,y1)
(s, (x0,y0)) —> (51, (x1,41)).

By construction, there exists ry such that (x, yo) € ro and:

(50, b0). (00 90)) 5 (51, bu), ().

By chaining, the entire trace exists in L(T?). Thus, L(T) € L(T?).
Bisimiulation Witness: Each state in T? is explicitly tagged with a bisimiulation witness. Define:
B(s,b) =b.

We now verify that this satisfies the projection properties:

e Property (2) and Property (3)— Coverage: For each transition ((x, y), (x’, ")) € Aps((s,b), (s, b)),
the input is drawn from b (by construction) and the output is truncated to lie in b’, ensuring
(x,y) €eband (x',y’) €b’.

e Property (1) — Bisimulation Witness: By the partitioning algorithm, suppose the original
transition is r while its bisimulation witness is b, then for all (x1,y), (x2,y) € b, we have:

((c,y), (X y) er &= ((x2,y), (x,y)) €r
Therefore
((x1,y), (¢, y) e {((xy), (", y) er: (x',y') € b’}

= ((x2y), (1) € {((xy). (x.y)) er: (x',y) € b}

Thus after the truncation

((e1y), (¢, 9) € AZ((5.0), (5, 6) &= ((x2y), (¥ y)) € AL((s,b), (5", 6))

Thus, T? is efficiently projectable, and its language is equal to that of T, completing the proof. O
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A.9 Determinization

The determinization procedure for NetKAT automata has been described in detail by Smolka
et al. [Smolka et al. 2015]; Here, we first define the notion of determinism relevant for NetKAT
automata. Given an automaton M = (S, Sy, Sy, A), we say it is deterministic if:

(1) Transition disjointness: For all s € S and distinct states s, s, € S,
A(s,s1) NA(s,s2) = 0.
(2) Transition totality: For every s € S, the set of all outgoing transitions from s is exhaustive:

U A(s,s’) = Pk x Pk.

s’€S
(3) Unique initial state: The automaton has exactly one initial state:
So| = 1.

We adopt a two-step strategy to ensure these properties. First, we make the initial state unique
and ensure that all outgoing transitions from each state are pairwise disjoint. Then, we extend the
transition relation to guarantee totality.

To begin, suppose the original automaton is given by M = (S, S, Sr, A). We first construct its
non-total determinized version:

Myer = (Sdet: Sdet0s Sdetfs Adet),

The construction is as follows:

® Sger = 25

L4 SdetO = {SO}

° Sdetf={S|SﬂSf¢®}
e Transition function:

Ader(saernssaer) = | () | A(sl,sz))\( J U A(sl,sz)).

$2€Sdet2 S1€5det1 S2¢Sdet2 S1€Sdet1

Then we prove the soundness and completeness of this automata

THEOREM A.16 (TRANSITION DISJOINTNESS). Let M = (S, So, S¢, A) and its determinized version
Mget = (Sdet> Sdetos Sdetf> Dder). Then:

L(M) = L(Mget),
and Myet satisfies the transition disjointness property.
Proor. To prove L(M) = L(Myet), we need to show that:
w w
(s1,X1) = (Sp, Xn) &= VSder1, 51 € Sder1> ISdetn> Sn € Sdetn> (Sder1 X1) —der (Sdetn> Xn)-
We proceed by induction on w.

Base Case (w = ¢€): Trivially, (sq, x1) = (s1,x1) and (Sger1, X1) SN (Sdet1, X1).
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Inductive Step (w = w’x,41): By the inductive hypothesis:

w W
(slsxl) — (sna xn) & VSger1, S1 € Sder1> ISdetn> Sn € Sdetns (sdetlaxl) —det (sdetn: xn)~

Now, suppose (xp, Xp+1) € A(Sp, Sp+1). Using the definition of Ay, we calculate:

| Ader Saert Saera = U U asssanc ) U asis

SE€Sdet2 S€Sdet2 S2€Sdet2 S1€Sdet1 S2€Sdet2 S1€5det1
’
- U N U ass U U ass
SE€Sdet2 S2€Sdet2 S1€Sdet1 Sy#Sdera S1€8der
’
- U (1 (1Y sas\ | ass
S€Sder2 S2€Sdet2 SyESderz S1€Sdet1 S1€8der1
’ ’
= U {(6,x") | Vs, (x,x7) € U A'sy sy & 83 € Sgern}
S€Sdet2 S1€Sdet1
= {ex) [ ex)e | ] Asis)
S1€S8det1
= U Asis
S1€Sdet1

Taking s = sp+1, we conclude that (x,, x,41) € A(Sp, Sn+1) C U Ader(Sdetns Sdet(n+1))- Hence,
S€Sdet(n+1)

there exists sge;(n+1) satisfying the property.
For the reverse direction, we have if (xn, Xn+1) € Ager (Sdetns Sdet (n+1)), by definition, (x,, x,41) €
A(Sp, Sp+1)- This completes the proof for language equivalence.

Transition Disjointness Property: Suppose sge;2 and S;letZ differ in s’. Assume s’ € sg.;» and
s" &5),,,- Then:

Adet(sdetlssdetz) c U A(slssl),

S1€S8det1
and:
’ ’
Ader (Saerts o) 0 ) Als1,8) = 0.
S1€Sdet1
Thus, Myet is disjoint in transition. ]

A.9.1 Complete Automata. The next step is to make the deterministic automaton complete. We
add a single state s, to the determinized automaton M = (S, Sy, s¢, A), transforming it into M =
(S, S0, S ).
The construction of the complete automaton is as follows:
e S’ =S U {s,}, where s, is a fresh state.
e Sp,and S £ Temain unchanged.
e The transition function A’ is defined as:
- Ifs,s’ €S, then A’(s,s") = A(s, s').
- IfseSands’ =s,, then:
N (s,s5.) = Pk x Pk \ U Als,s).
s’eS
- Ifs=s, ands’ €S, then:
A (sy,s") = 0.
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- Ifs=s, and s’ = s, then:
A,(SJ_,SJ_) = Pk x Pk.
THEOREM A.17. The automaton M’ satisfies L(M") = L(M), and is deterministic.

ProoFr. By construction it is easy to show the determinism.
Moreover, since s, is not a final state and has no outgoing transitions to the original states S,
any path reaching s, cannot contribute to the language. Therefore, L(M") = L(M). O

A.10 Bisimulation

The final step is to check bisimulation between two automata. Suppose we have two determinized
and complete automata M; = (S, {s10}, S1f, A1) and Mz = (Sz, {s10}, Saf, A2). We aim to verify if
L(M;) = L(M;). We adopt the method from the NetKAT automata equivalence check algorithm.

Algorithm 1: NetKAT Automata Equivalence Check

1 Input: Two deterministic automata M; = (Sy, {s10}, S1f, A1), My = (Sz, {520}, Sz, Az).
2 Output: Boolean indicating whether M; and M, accept the same language.
(1) Initialize W « {(s10, S20, @) | @ € Pk}.
(2) While W changes:
(a) For each (s, 55, 0) € W:
(@) If s; € Sir and s, ¢ Sy, or vice versa, then return false.
(ii) Otherwise, for all 57, s, and @’ such that

(a,a’) € Ai(s1,87) N Ay(sz, 85),

add (s7,s5,a’) to W.
(3) Return true.

Soundness and Completeness of the Algorithm. To prove that the algorithm correctly determines
whether two automata are bisimilar, we establish the following properties:

e Soundness: If the algorithm returns true, then M; and M, are bisimilar.
e Completeness: If M; and M, are bisimilar, then the algorithm returns true.

Definitions.

e Two automata are bisimilar if there exists a relation R C S; X S; X Pk such that:
(1) (s10, $20, @) € R for all & € Pk.

(2) For each (si,s2,a) € R, if (s1, @) = (s,a’), then (s, ) = (s5, ") for some s;, and

(s, s5,a") €R.

(3) Similarly, for (s, c) = (s5, '), there exists s; such that (s, @) SN (s;,a’),and (s],s5,a’) €
R

(4) 51 € Sirifand only if s, € Syy.
We want to prove that two complete and deterministic automata M; = (Sy, {s10}, S17, A1) and
My = (82, {s20}, S2f, Az) are equivalent if and only if they are bisimilar.

THEOREM A.18. Let My = (S1, {s10}, S1f, A1) and My = (Sa, {s20}, Saf, A2) be complete and deter-
ministic automata. Then:

L(M,) = L(M;) <= M; and M, are bisimilar.

Proor. We prove both directions of the equivalence.
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(1) If My and M, are bisimilar, then L(M;) = L(M;): Assume M; and M, are bisimilar. Let R C
S1 X S5 X Pk be a bisimulation relation such that:

(1) (s10, 820, @) € Rforall a € Pk
(2) If (s1, 82, @) € Rand (sy, a) (s}, a’) in My, then there exists s; € S, such that (s, a)
(s5,a’) in My, and (sl,sz, a’) €R

(3) Similarly, for (s;, @) — (s3,@’) in My, there exists s| € S; such that (s, a) (sl, a’) in
M, and (s],s5,a’) € R.
(4) s1 € Sif & 52 € Syf.
To show L(M;) = L(M,), let w € L(M;). By definition, there exists a sequence of transitions:
x Xn
(510:%0) = ... = (S1n, Xn),
where s1, € Sf.
Since (s10, S20, @) € R for all @, and R is preserved across transitions, there exists a corresponding
sequence of transitions in M:
(520, X0) = .. = ($2m, %),
where s, € Sy Thus w € L(Ms).
By symmetry, if w € L(M,), then w € L(M;). Therefore, L(M;) = L(My).

(2) If L(My) = L(M,), then M; and M, are bisimilar: Assume L(M;) = L(M,). We construct a
bisimulation relation R C S; X S, X Pk as follows:

R = {(s1,50, ) | for all w, (s1,x) BN (s, x") in MiAs] € Sip & (52, %) BN (s5,x") in MyAsy € Syp}.

We need to verify that R satisfies the conditions of bisimulation:

(1) Base Case: (s19, $29, @) € R for all a. This follows because L(M;) = L(M,), and for the initial
states s;o and sy, their final states after processing any word w must match.

(2) Inductive Step: Suppose (s1,52, @) € R If (s, ) — (sl, a’) in M, then:

e By definition of R, for all w, if 5] € Sif, then (s, ) — (s5, ") in My, and s, € Saf.
e Similarly, if s] ¢ Slf, then s, & Szf Thus, (s],s5,a’) € R.

Conversely, 1f (s2, ) — (s3,@’) in M, we can similarly argue that there exists s] € S; such

that (s, a) (s}, a’) in My, and (s],s5, a’) € R.
(3) Final States: For (sy,s2, @) € R, the condition s; € Sy &= s, € Sy is explicitly part of the
construction of R. Thus, the bisimulation relation preserves final state equivalence.

Therefore, M; and M, are bisimilar. ]

THEOREM A.19. The equivalence checking algorithm returns true if and only if My and M, are
bisimilar.
Proor. Soundness: Assume the algorithm returns true. Define the relation
R ={(s1,82,@) | (51,82, ) € W},

where W is the working set computed by the algorithm. By construction and the iterative update
steps of W, the following conditions hold:

(1) If (sq, 2, a) € R, then s; € Si if and only if 5, € Syf (enforced by step 2(a)(i)).
(2) If (sy, a) (s7, a’) in My, then step 2(a)(ii) ensures that there exists a matching transition

(s2, a) (s5, a’) in M; such that (s],s;,@") € R.
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(3) Symmetrically, any transition in M, is matched by a corresponding transition in M;.

Hence, R is a bisimulation relation, and M; and M, are bisimilar.
Completeness: Assume M; and M, are bisimilar. Let R € S; X S; X A be a bisimulation relation.
We show that the algorithm returns true.
(1) The initial working set W contains all triples (s10, S20, &) for @ € A, ensuring the base cases
of RCW.
(2) At each iteration, if (s, 2, @) € R and there exists a transition (s, @) AN (s}, a’), then by
the definition of bisimulation, there exists a matching transition (sz, @) 2, (s5,a’), and the
algorithm includes (s}, s, &) in W.

Since the relation R is finite and the algorithm terminates when W stabilizes, all bisimulation
conditions are eventually verified, and the algorithm returns true. O

A.11 Maximum Bisimulation

In the paper, we proposed a localized bisimulation approach that focuses on computing the equiv-
alence class of (x,y) based on whether they lead to the same (x’,y’) in the next state. However,
a larger equivalence class may also be computed using the classical notion of bisimilarity, which
considers agreement over the y-tape across all subsequent states.

DEFINITION 6 (X-BISIMULATION). For a synchronous NetKAT transducer T = (S, Sy, S ' As, 0,0, 0),
a relation x; =y, x; is an x-bisimulation if:

e Forall ((x1,y), (x3,y")) € As(s,s”), there exists x4 such that ((x2,1), (x4,y")) € As(s,s”) and

X3 Es’,y' X4.
o Forall ((x2,y), (x4, y")) € As(s,s”), there exists x5 such that ((x1,y), (x3,y")) € As(s,s”) and
X3 Sy Xy

We define the maximum x-bisimulation relation Rmax to be the union of all x-bisimulations.

This definition follows the tradition of general bisimulation, with the difference that the equiva-
lence relation x; =, x; is parameterized by both the current state s and the y-tape. This is sufficient
for performing projection on transducers where only the X-tape is eliminated, while the state s and
Y-tape remain unchanged. Identifying equivalence classes on the X-tape can significantly reduce
the number of states that must be considered during projection.

We now show how to transform a general synchronous transducer into one that is efficiently
projectable. Our procedure involves two steps:

(1) Compute the bisimulation witness set for each state.
(2) Split each state according to its bisimulation witness.

For the first step, suppose we have a partition function P that partitions the (x, y) pairs based on
whether they agree on the resulting y’ values at the next state.

DEFINITION 7 (BISIMULATION WITNESS PARTITION FUNCTION). Let P : (Pk X Pk) X (Pk X Pk) —
2PkXPk be g partition function if the following hold:

(1) (Disjointness) For all r,r, € P(R),

{(q,y) e} n{(x,y) € r} = 0.
(2) (Agreement ony) For allr € P(R) and all (x1,y), (x2,y) €1,

{v' | (Ge1,y), (rs,y") € RY = {y" | ((x2,y). (x3,y")) € R}.
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(3) (Coverage)
U r={xy | (), (¢.y)) € R}
reP(R)
This partition function defines the equivalence classes of (x,y) pairs based on whether they
agree on the y’ values reachable in the next state. With this function, we can now compute the
bisimulation witness set for each state.

Algorithm 2: Bisimulation Witness Generation

1 Input: A synchronous NetKAT transducer T = (S, Sy, S¢, As, 0, 0, 0), Partition function
P : (Pk X Pk) x (Pk x Pk) — 2PkxPk
2 Output: A target function 8 : S — 22", producing a set of bisimulation witnesses for
each state.
(1) Initialize B(s) « {{(pk1, pkz) | pk1, pks € Pk}} for all states s.
(2) While B changes for any state s; (initialization counts as a change):
(a) For eachs; € S:
(i) For each current bisimulation witness B(sz) € B(s2), compute the new partition set P
with respect to predecessor s;:

Bupdate (51) = U P({((xy). (x 1) € As(si.52) | (x,9') € B(sz)})

B(s2)€8(s2)

(if) Update the witness set for s; by intersecting with the new partitions:

B(sl) — {B(sl) N Bupdate(sl) | B(Sl) € 8(81), Bupdate(sl) € Bupdate(sl)}
(3) Return B.

Then we simply perform state splitting based on the bisimulation witness set. The procedure is
as follows.

We define the split transducer:

L P P AP
T? & (SP,SO,Sf,AS,(D,@,Q))
as:
SP £ {(s,b) | s €S,be B(s)).
o SP2 {(s0,b) | s0 € So.b € B(so)}-
P A

Sf = {(Sf, b) | Sy € Sf,b (S B(Sf)}.

Transition relation:

Aﬁ((sl,bl), (s2:b2)) = {((x,y), (x",y)) € As(s1,52) | (x,) € by, (¥, ¢) € by}

THEOREM A.20 (CORRECTNESS OF PROJECTION). Let T = (S, So, Sy, As, 0,0, 0) be a synchronous
NetKAT transducer. Then L(T) = L(T?), and T? is efficiently projectable.

Proor. The language equivalence L(T) = L(T?) follows from a similar argument used in the
proof of correctness for the localized approach.

To prove efficient projectability, assume for contradiction that T? is not efficiently projectable.
Then there must exist states s;, s; and packets xi, x5, y such that ((x1,y), (x3,y")) € A(sy, s2), but
there is no x4 such that ((x2,y), (x4,y")) € A(s1,sz2). However, the algorithm checks and back-
propagates all partitions to the predecessor states. Therefore, such a case would have triggered a
partition refinement for state s;, contradicting the assumption. Hence, T? is efficiently projectable.

]
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