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Practical Type Inference with Levels

ANONYMOUS AUTHOR(S)

Modern functional languages rely on sophisticated type inference algorithms. However, there often exists a

gap between the theoretical presentation of these algorithms and their practical implementations. Specifically,

implementations employ techniques not explicitly included in formal specifications, causing undesirable

consequences. First, this leads to confusion and unforeseen challenges for developers adhering to the formal

specification. Moreover, theoretical guarantees established for a formal presentation may not directly translate

to the implementation. This paper focuses on formalizing one such technique, known as levels, which is

widely used in practice but whose theoretical treatment remains largely understudied. We present the first

comprehensive formalization of levels and demonstrate their applicability to type inference implementations.

1 Introduction
Modern functional programming languages utilize sophisticated type inference mechanisms de-

rived from the Hindley-Milner algorithm [Damas and Milner 1982; Hindley 1969] to support

expressive type systems. These expressive types include higher-rank polymorphism [Dunfield and

Krishnaswami 2013; Odersky and Läufer 1996; Peyton Jones et al. 2007], impredictivity [Emrich et al.

2020; Parreaux et al. 2024; Serrano et al. 2020], higher-kinded types [Xie et al. 2019], and existential
types [Eisenberg et al. 2021; Läufer and Odersky 1992].

Most studies in type inference often involves both a formal declarative specification as well as a

corresponding algorithmic type system. A central focus of such work lies in establishing soundness
and completeness of the algorithmic system, demonstrating that the algorithmic system faithfully

captures the properties of the declarative specification.

However, while soundness and completeness are indeed fundamental for type inference algo-

rithms, practical implementations demand more than theoretical guarantees. A crucial aspect often

overlooked in formal presentations is the actual implementation techniques in modern languages.

These techniques are important as practical type inference systems must not only be sound, but

also performant, principled, and easy-to-maintain to address practical concerns such as efficiency

and code clarity.

As an example, consider the following program:

let f = 𝜆x → x in (f 1, f True)
This program requires let generalization to infer the polymorphic type ∀a. a → a for f . However,
standard presentations of Hindley-Milner let generalization [Damas and Milner 1982; Hindley 1969;

Peyton Jones et al. 2007, 2006] involves traversing the entire typing context to decide the free type

variables for 𝜆𝑥 . 𝑥 . This traversal can be inefficient in larger programs with numerous variables and

nested let expressions. Practical implementations often use more efficient generalization strategies.

The omission of implementation techniques in the formal presentations of type inference algo-

rithms has undesirable consequences. First, it creates a gap between the theoretical description and

the practical realization of these algorithms. Consequently, developers who implement algorithms

based solely on formal specifications may encounter unforeseen performance bottleneck or end up

implementing additional ad-hoc checks, and only later discover more practical implementation

strategies. Moreover, and perhaps more importantly, theoretical guarantees established for a formal

presentation may not directly translate to the implementation. This discrepancy can undermine

the reliability and predictability of type inference algorithms.

Therefore, we argue that it is essential to bridge this gap by incorporating the key implementation

insights into presentations of type inference algorithms. This involves presenting the essential

concepts of implementation techniques without delving into every low-level detail, as including
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111:2 Anon.

every implementation nuance can easily lead to a cluttered and unwieldy presentation. An overly

prescriptive approach is also impractical, as developers may still make varied choices regarding

concrete implementation details.

To this end, this paper focuses on levels, a technique widely used in practical type inference

implementations, but whose formal treatment remains largely understudied. Originally proposed

by Rémy [1992], levels have been employed in various type checkers, particularly for OCaml

and Haskell, to effectively implement features including let-generalization, escape checking of

skolems in higher-rank polymorphic systems, and type regions, and more. Surprisingly, despite

their prevalence, a formalism of levels remains largely absent from the presentations of those

algorithms. Notable exceptions include the original formalism by Rémy [1992] and subsequent

work by Kuan and MacQueen [2007], which focused only on levels for let generalization.

This paper aims to address this gap by providing the first comprehensive formalism of levels

beyond let generalization, and demonstrate their broader applications within type inference im-

plementations. The formalization provides a theoretical foundation for levels, clarifying their role

and interactions, particularly when used for multiple purposes within a type inference algorithm.

Moreover, we establish desirable properties including soundness and completeness, ensuring the

reliability of level-based type inference. We believe this study will benefit both practitioners and

researchers in the field by providing a clearer understanding of levels and their applications.

We offer the following contributions:

• We provide a declarative type system that incorporates let generalization, higher-rank polymor-

phism, and local datatypes within a level-based framework (§4).

• We prove that the level-based declarative system is sound and complete with respect to a non-

level-based declarative system (§5). These proofs have been mechanized using the Coq proof

assistant [Coq Team 2024], establishing key level-related properties and invariants.

• We present a level-based algorithmic type system, featuring a novel polymorphic promotion
process for resolving level constraints. We prove the algorithm to be sound and complete with

respect to the level-based declarative type system.

• We have implemented and evaluated the level-based type inference algorithm in the Koka

compiler (§7), a strongly typed functional language with a polymorphic type-and-effect system.

• We explore language extensions and show how levels are used to support them within modern

type checkers such as GHC and the OCaml type checker (§8).

The Coq proofs and the modified Koka compiler are provided as supplementary materials. Our

formalism is detailed, and some rules are elided for space reasons. The complete set of rules, as

well as proofs of stated theorems for the algorithmic type system are included in the appendix.

2 Overview
This section gives an overview of our work; we use Haskell-like syntax for examples.

2.1 Hindley Milner and Let Generalization
TheHindley-Milner (HM) type system [Damas andMilner 1982; Hindley 1969] provides a foundation

for many modern type inference algorithms. A key feature of HM is its ability to incorporate

parametric polymorphism while still being able to infer the most general type (i.e. the principal
type) of a program without requiring user-provided annotations.

As an example, consider the following program:

let f = 𝜆x → x in (f 1, f True) -- f : ∀a. a → a
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Practical Type Inference with Levels 111:3

Here, f is applied to arguments of two different types, Int and Bool respectively. Fortunately, since
the variable x in the expression 𝜆x . x is unconstrained, its type can be generalized. This allows HM

to infer a polymorphic type ∀a. a → a for f , ensuring the program successfully type-checks.

However, generalization must be handled with care. Specifically, consider:

𝜆x → let y = x in (y + 1, not y) -- error

In this case, the definition of y refers to x . While it might seem that x is unconstrained within the

definition of y , leading to a tempting generalization of y’s type to ∀a. a, this would be incorrect!

Rather, since x is defined outside of y’s definition, we cannot generalize over its type.
To correctly implement generalization, the HM let generalization is formalized as follows:

Ψ ⊢ 𝑒1 : 𝜏1 Ψ, x : ∀𝑎. 𝜏1 ⊢ 𝑒2 : 𝜏2 𝑎 ∉ ftv (Ψ)
Ψ ⊢ let x = 𝑒1 in 𝑒2 : 𝜏2

HM-let

The rule first infers the type of 𝑒1, getting 𝜏1. It then generalizes 𝜏1 to ∀𝑎. 𝜏1 as the type of x, and
adds x to the typing context to infer the type of 𝑒2, getting 𝜏2. Importantly, the side condition

𝑎 ∉ ftv (Ψ) requires the generalized type variables to not appear in the free type variables of Ψ.
To illustrate the importance of the side condition in rule HM-let, let us revisit our previous

examples. In the first case, we have • ⊢ 𝜆x . x : a → a, allowing us to generalize the type to obtain

f : ∀a. a → a. However, in the second case, we have x : a ⊢ x : a, and the occurrence of a in the

typing context prevents generalization, resulting in y : a, thus correctly reject the second program.

A language implementor for the HM type system will then use the algorithmic version of this

rule, which takes 𝑎 = ftv (𝜏1) − ftv (Ψ), explicitly calculating the set of type variables to generalize.

However, implementing generalization directly this way can lead to inefficiencies. Specifically,

each generalization step requires traversing the entire typing context (ftv (Ψ)) to determine the

free type variables. This traversal can become computationally expensive, especially when dealing

with larger contexts containing numerous definitions.

To address such inefficiency, we employ the following let generalization rule let:

Ψ ⊢𝑛+1 𝑒1 : 𝜏1 Ψ, x : ∀ftv𝑛+1 (𝜏1) . 𝜏1 ⊢𝑛 𝑒2 : 𝜏2

Ψ ⊢𝑛 let x = 𝑒1 in 𝑒2 : 𝜏2
let

Ψ, x : 𝜏≤𝑛
3

⊢𝑛 𝑒 : 𝜏4

Ψ ⊢𝑛 𝜆x . 𝑒 : 𝜏3 → 𝜏4
lam

Notably, the typing judgment is now indexed by an integer 𝑛, called a level. This level is incremented

when typing the expression 𝑒1, effectively tracking the nesting depth of let expressions. (The concept

of levels extends beyond nested lets, as we will explore later.) Moreover, each type variable is now

also associated with a level. Importantly, a type variable can only be used if its level is less than

or equal to the current typing level. This invariant is maintained throughout the type inference

process. In particular, when typing a lambda expression (rule lam), the type of the argument 𝑥

is required to have a level at most 𝑛. As a result, the typing context Ψ in rule let only contains

variables at a level at most 𝑛, while the type 𝜏1 may include variables at level 𝑛 + 1. Upon exiting 𝑒1,

any variables at level 𝑛 + 1 are guaranteed to not occur in Ψ. Therefore, we can generalize those

variables in 𝜏1.

We can see that rule let, compared to ruleHM-let, offers amore efficient approach generalization.

Specifically, rule let calls ftv𝑛+1, which traverses the type 𝜏1 to identify free type variables at level

𝑛 + 1, rather than traversing the typing context. A formalism with rule let was first introduced by

Rémy [1992]
1
, which has inspired various practical implementations. Rémy’s work focused only on

let generalization. In contrast, this work demonstrates the broader applicability of levels to other

type features. Moreover, we support generalization in a bidirectional type system. Furthermore,

1
Rémy [1992] used the term ranks for the integer 𝑛, while modern type checkers generally refer to it as a level.
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while the declarative specification of levels assumes an implicit mapping from variables to their

levels, we additionally provide a mechanization of the level-based system, making such mapping

explicit and establishing key invariants and properties for a more rigorous treatment.

2.2 Levels for Higher-Rank Polymorphism
Higher-rank polymorphism allows universal quantifiers to appear nested. Consider the following

program taken from Peyton Jones et al. [2007]:

f :: (∀a. [a] → [a]) → ([Bool ], [Char ])
f x = (x [True, False], x [’a’, ’b’]))
Here, f takes a polymorphic function as an argument, making f itself a rank-2 function. The

argument x can thus be applied to different list types. As an example, f reverse is a valid application,
where reverse takes a list and returns it in the reverse order.

However, care needs to be taken when type-checking higher-rank polymorphic programs. In

particular, assuming (g : ∀a b. a → b → b), consider the following program:

(𝜆(f :: ∀c. c → ∀d . d → d) → f 1) g -- error

Here the function expects an argument of type (∀c. c → ∀d . d → d), while g has type (∀a b. a →
b → b). This requires us to check a subtyping constraint (∀a b. a → b → b)<: (∀c. c → ∀d . d → d).
However, such a subtyping relation does not hold [Dunfield and Krishnaswami 2013; Odersky and

Läufer 1996]. To illustrate why, let’s try to resolve the constraint. First, we skolemize c, by removing

the universal quantifier and replacing the bound type variable with a fresh skolem variable c. We

can then instantiate awith c. However, we need to instantiate b before skolemizing d . Consequently,
d falls outside the scope of b, preventing the subtyping relation from holding.

In an implementation, the system will first instantiate b with a unification variable, and then

skolemize d . The system must then ensure that b cannot be unified with the skolem d . This
highlights a crucial aspect of higher-rank type system: the importance of managing the relative

scope of unification variables and skolem variables.

Dunfield and Krishnaswami [2013] presents an elegant formalism of higher-rank polymorphism

based on ordered contexts [Gundry et al. 2010]. This approach carefully tracks the relative scope of

unification and skolem variables by imposing a strict ordering, and a unification variable can only be

solvedwith variables preceding it in the context. This ensures well-scopedness, but maintaining such

an ordered context can introduce significant overhead in practical implementations. Peyton Jones

et al. [2007] ensures correctness by incorporating additional checks in the algorithmic type system.

Specifically, writing 𝜎 for polymorphic types, when checking 𝜎1 <: ∀a. 𝜎2, the implementation

skolemizes a, and recursively checks 𝜎1 <: 𝜎2, producing a substitution 𝑆 from unification variables

to types. The system then checks that 𝑎 ∉ ftv(𝑆 (𝜎1)) and 𝑎 ∉ ftv(𝑆 (𝜎2)), successfully preventing

skolems from escaping their scope through unification variables after applying the substitution 𝑆 .

However, ensuring that an implementation has incorporated complete and sufficient checks (for

skolem escape or beyond) can be a rather subtle matter.

In our system, we demonstrate that levels can effectively implement skolem escape checks. The

key idea is to associate each skolem variable with a level. In particular, upon entering the scope of

a skolem, such as 𝜎1 <: ∀a. 𝜎2, we increment the typing level, and associate the skolem a with this

new level. Since unification variables in 𝜎1 have lower levels, they cannot be unified with skolems

at higher levels, preventing skolems from escaping. Importantly, skolem escape checks are now

implemented in the same framework based on levels.

Notably, levels now start serving multiple purposes. Since subtyping can also increment the level,

levels no longer correspond to the nesting depth of lets. Moreover, subtyping can introduce variables
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Practical Type Inference with Levels 111:5

with levels higher than those previously used when entering the scope of let expressions. This

seems to suggest that the generalization in rule let should be updated from ftv𝑛+1 (·) to ftv⩾𝑛+1 (·),
to include all variables with levels greater than or equal to 𝑛 + 1. Surprisingly, we show that in our

system the generalization over ftv𝑛+1 (·) remains sound and complete. This subtle nuance stresses

again the importance of a rigorous formal analysis of levels.

2.3 Type Regions
Let us now turn our attention to type regions, specifically focusing on local datatype declarations.

2

As an example, the following program declares a datatype Tree with a scope limited to the region

following the in keyword:
3

data Tree = Leaf Int | Node Tree Tree in
let f x = case x of Leaf i → i;Node y z = f y + f z
in f (Node (Leaf 2) (Leaf 3)) -- 5

Importantly, the type Tree cannot escape its declared scope. The following program will get rejected:

data Tree = Leaf Int | Node Tree Tree in
Leaf 5 -- error

This restricted scope exemplifies the concept of type regions, similar to type declarations within

local modules (as in OCaml) or type variables unpacked from existential types. To enforce this

restriction, the type system must ensure that Tree does not appear in the return type of the

expression following the declaration. This can be achieved through a straightforward syntactic

check of the return type.

Interestingly, we can also leverage levels to implement this scope restriction. Specifically, when

entering the scope of a type region, we increment the current typing level, and associate Tree with
this new level. Upon exiting the scope, we check that the return type has a level less than or equal

to the previous level, which effectively ensures that Tree does not occur free in the return type.

While obtaining the level of a type might involve traversing the entire type structure, leading

to a cost similar to directly searching for Tree, this approach highlights the versatility of a level-

based framework. Checking the level of a type can also be implemented through efficient lookup

mechanisms (§8).

In the work, we present a novel type system formalism combining let generalization, higher-rank

polymorphism, and local datatype declarations in a unified level-based framework. This showcases

the versatility of levels in type inference, enabling programmers to implement these different

features through a common mechanism. Why choose this particular combination of features?

Because they demonstrate the key roles levels play in modern type checkers, for generalization,

subtyping and unification, and scope checking, respectively. These features also illustrate the

interplay of levels when serving multiple purposes within an implementation. We demonstrate

how the notion of levels can be further applied to other language extensions and how they are

implemented in modern type checkers in §8.

In the rest of this paper, we begin by presenting a non-level-based declarative system, and

then prove that our level-based system is sound and complete with respect to the non-level-based

specification. These proofs have been mechanized to capture the subtleties of the calculus. We then

present a corresponding level-based type inference algorithm.

2
The datatype declarations here correspond to ML/Haskell-style generative datatypes [MacQueen et al. 2020, §4.3.3].

3
While we use Haskell-like syntax for illustrative purposes, Haskell does not support local datatype declarations.
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expr 𝑒 F 𝑖 | x | D | 𝜆x . 𝑒 | 𝜆x : 𝜎. 𝑒 | 𝑒1 𝑒2 | 𝑒 : 𝜎
| let x = 𝑒1 in 𝑒2 | data T = Di 𝜎j

j
i
in 𝑒 (𝜎 closed)

polytype 𝜎 F ∀a. 𝜎 | 𝜎1 → 𝜎2 | 𝜏
monotype 𝜏 F Int | a | 𝜏1 → 𝜏2 | T
context Ψ F • | Ψ, x : 𝜎 | Ψ, T | Ψ,D : 𝜎

Fig. 1. Syntax

Ψ ⊢ 𝑒 ⇒ 𝜎 (Type Inference)

t-lam

Ψ, x : 𝜏 ⊢ 𝑒 ⇒ 𝜎

Ψ ⊢ 𝜆x . 𝑒 ⇒ 𝜏 → 𝜎

t-app

Ψ ⊢ 𝑒1 ⇒ 𝜎

𝜎 ⊲ 𝜎1 → 𝜎2 Ψ ⊢ 𝑒2 ⇐ 𝜎1

Ψ ⊢ 𝑒1 𝑒2 ⇒ 𝜎2

t-anno

Ψ ⊢ 𝜎 Ψ ⊢ 𝑒 ⇐ 𝜎

Ψ ⊢ 𝑒 : 𝜎 ⇒ 𝜎

t-let

Ψ ⊢ 𝑒1 ⇒ 𝜎1
Ψ, x : ∀𝑎. 𝜎1 ⊢ 𝑒2 ⇒ 𝜎2

𝑎 ∉ ftv (Ψ)
Ψ ⊢ let x = 𝑒1 in 𝑒2 ⇒ 𝜎2

t-data

Ψ, T , Di : 𝜎j
j → T

i
⊢ 𝑒 ⇒ 𝜎

T ∉ fT(𝜎) Ψ ⊢ 𝜎 𝑗
𝑗
𝑖

Ψ ⊢ data T = Di 𝜎j
j
i
in 𝑒 ⇒ 𝜎

Ψ ⊢ 𝑒 ⇐ 𝜎 (Type Checking)
t-lamC

Ψ, x : 𝜎1 ⊢ 𝑒 ⇐ 𝜎2

Ψ ⊢ 𝜆x . 𝑒 ⇐ 𝜎1 → 𝜎2

t-forall

Ψ ⊢ 𝑒 ⇐ 𝜎 a ∉ ftv (Ψ)
Ψ ⊢ 𝑒 ⇐ ∀a. 𝜎

t-sub

Ψ ⊢ 𝑒 ⇒ 𝜎1 ⊢ 𝜎1 <: 𝜎2

Ψ ⊢ 𝑒 ⇐ 𝜎2

𝜎 ⊲ 𝜎1 → 𝜎2 (Matching)
m-forall

𝜎 [a := 𝜏] ⊲ 𝜎1 → 𝜎2

∀a. 𝜎 ⊲ 𝜎1 → 𝜎2

m-func

𝜎1 → 𝜎2 ⊲ 𝜎1 → 𝜎2

⊢ 𝜎1 <: 𝜎2 (Subtyping)

s-refl

⊢ 𝜎 <: 𝜎

s-func

⊢ 𝜎3 <: 𝜎1 ⊢ 𝜎2 <: 𝜎4

⊢ 𝜎1 → 𝜎2 <: 𝜎3 → 𝜎4

s-forallR

⊢ 𝜎1 <: 𝜎2 a ∉ ftv (𝜎1)
⊢ 𝜎1 <: ∀a. 𝜎2

s-forallL

⊢ 𝜎1 [a := 𝜏] <: 𝜎2

⊢ ∀a. 𝜎1 <: 𝜎2

Fig. 2. Declarative type system (selected rules)

3 Declarative Type System
This section presents a declarative higher-rank polymorphic type system without levels, similar

to the one in Dunfield and Krishnaswami [2013]; Peyton Jones et al. [2007], extended with local

datatype declarations. This system serves as the base system. In next section we will introduce a

level-based system and then establish its soundness and completeness with respect to this system.

3.1 Syntax
Fig. 1 presents the syntax of expressions and types used in this section and §4. Expressions 𝑒 include

literals 𝑖 , variables x, lambdas 𝜆x . 𝑒 , annotated lambdas 𝜆x : 𝜎. 𝑒 , applications 𝑒1 𝑒2, annotated

expressions 𝑒 : 𝜎 , let expressions let x = 𝑒1 in 𝑒2, and local datatypes data T = Di 𝜎j
j
i
in 𝑒 . For
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Practical Type Inference with Levels 111:7

simplicity, we focus on datatypes without type parameters.
4
We assume type annotations (in 𝑒 : 𝜎

and 𝜆x : 𝜎. 𝑒) are user-provided and thus are always closed.

Polymorphic types 𝜎 include universal quantifications ∀a. 𝜎 , functions 𝜎1 → 𝜎2, and monotypes

𝜏 . Monomorphic types 𝜏 contain no universal quantifiers, and include the integer type Int, type
variable a, functions 𝜏1 → 𝜏2, and datatype T .

Type contexts Ψ track the type of variables, the datatypes, and the types of data constructors.

3.2 Typing
Fig. 2 presents the bidirectional typing rules. For space reasons, we show only selected rules; the

complete set of rules can be found in the appendix. The typing judgment has two modes: type

inference Ψ ⊢ 𝑒 ⇒ 𝜎 infers the type 𝜎 of 𝑒 , while type checking Ψ ⊢ 𝑒 ⇐ 𝜎 checks 𝑒 against a

given type 𝜎 .

Rule t-lam non-deterministically guesses a monotype 𝜏 for variable x, and adds x : 𝜏 to the

context to type-check the body 𝑒 . Rule t-app first infers the type of 𝑒1, getting 𝜎 . Since 𝜎 must be a

function type, the rule uses the matching judgment ⊲ to match the type into a function type, where

rule m-forall instantiates the universal variable a with a monotype. Once rule t-app matches

𝜎 to the function type 𝜎1 → 𝜎2, it checks the argument 𝑒2 against the expected argument type

𝜎1, and returns the result type 𝜎2. Rule t-anno ensures the provided annotation is well-formed

under the current typing context to exclude out-of-scope uses of type constructors and checks 𝑒

against the provided annotation. Rule t-let begins by inferring the type of 𝑒1, getting 𝜎1. It then

generalizes 𝜎1 over variables 𝑎, provided that 𝑎 ∉ ftv (Ψ). The rule then adds x : ∀𝑎. 𝜎1 to the

context to type-check the let body.

Rule t-data introduces the type constructor and its associated data constructors into the context.

It then type-checks 𝑒 , obtaining the result type 𝜎 . Finally, the rule ensures that T does not escape

its scope by checking T ∉ fT(𝜎), where fT collects all type constructors in 𝜎 .

Checking. For type-checking, rule t-lamC checks a lambda against a function type 𝜎1 → 𝜎2,

by adding x : 𝜎1 to the context and then checking the lambda body against 𝜎2. This rule shows

the benefit of bidirectional typing, as it allows the variable 𝑥 to have a potentially polymorphic

type 𝜎1. To type-check against a polymorphic type, rule t-forall first ensures that a ∉ Ψ, and
then proceeds to checking the expression against 𝜎 . Lastly, rule t-sub switches from checking to

inference mode. It first infers the type of 𝑒 , and then checks the subtyping relation ⊢ 𝜎1 <: 𝜎2.

Subtyping. The bottom of Fig. 2 presents the subyping judgment. Rule s-refl states that a type

is a subtype of itself. Rule s-func handles function subtyping, where subtyping is contravariant on

the argument type, and covariant on the return type. Rule s-forallR states that 𝜎1 is a subtype of

∀a. 𝜎2, if 𝜎1 is a subtype of 𝜎2, provided that a does not appear free in 𝜎1. Lastly, rule s-forallL

instantiates a polymorphic type on the left hand side with a monotype 𝜏 , and checks if 𝜎1 [a := 𝜏]
is a subtype of 𝜎2.

4 Level-Based Declarative Type System
This section introduces our level-based declarative type system. The language has the same syntax

given in Fig. 1. Following Rémy [1992], we assume a given mapping that maps type variables to

their levels, which also tracks the levels of type constructors. (See §5 for a formalism with an

explicit level context.) We assume there are infinitely many variables of every level. We write a𝑛 or

T𝑛
to denote that a and T are of level 𝑛. We can then extend levels to types, where the level of a

4
We foresee no fundamental challenges in supporting parameterized data types, which primarily entails incorporating

higher-kinded types. Other advanced datatype features (e.g. GADTs) would require further extensions (§8).
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Ψ ⊢𝑛 𝑒 ⇒ 𝜎 (Level Type Inference)

lt-lit

Ψ ⊢𝑛 𝑖 ⇒ Int

lt-dctor

D : 𝜎 ∈ Ψ

Ψ ⊢𝑛 D ⇒ 𝜎

lt-var

x : 𝜎 ∈ Ψ

Ψ ⊢𝑛 x ⇒ 𝜎

lt-lam

Ψ, x : 𝜏⩽𝑛 ⊢𝑛 𝑒 ⇒ 𝜎

Ψ ⊢𝑛 𝜆x . 𝑒 ⇒ 𝜏 → 𝜎
lt-tlam

Ψ ⊢𝑛 𝜎1 Ψ, x : 𝜎1 ⊢𝑛 𝑒 ⇒ 𝜎2

Ψ ⊢𝑛 𝜆x : 𝜎1 . 𝑒 ⇒ 𝜎1 → 𝜎2

lt-app

Ψ ⊢𝑛 𝑒1 ⇒ 𝜎 ⊢𝑛 𝜎 ⊲ 𝜎1 → 𝜎2 Ψ ⊢𝑛 𝑒2 ⇐ 𝜎1

Ψ ⊢𝑛 𝑒1 𝑒2 ⇒ 𝜎2

lt-anno

Ψ ⊢𝑛 𝜎

Ψ ⊢𝑛 𝑒 ⇐ 𝜎

Ψ ⊢𝑛 𝑒 : 𝜎 ⇒ 𝜎

lt-let

Ψ ⊢𝑛+1 𝑒1 ⇒ 𝜎1
Ψ, x : ∀ftv𝑛+1 (𝜎1). 𝜎1 ⊢𝑛 𝑒2 ⇒ 𝜎2

Ψ ⊢𝑛 let x = 𝑒1 in 𝑒2 ⇒ 𝜎2

lt-data

Ψ, T , Di : 𝜎j
j → T

i
⊢𝑛+1 𝑒 ⇒ 𝜎⩽𝑛

T𝑛+1 Ψ ⊢𝑛 𝜎 𝑗
𝑗
𝑖

Ψ ⊢𝑛 data T = Di 𝜎j
j
i
in 𝑒 ⇒ 𝜎

Ψ ⊢𝑛 𝑒 ⇐ 𝜎 (Level Type Checking)

lt-lamC

Ψ, x : 𝜎1 ⊢𝑛 𝑒 ⇐ 𝜎2

Ψ ⊢𝑛 𝜆x . 𝑒 ⇐ 𝜎1 → 𝜎2

lt-tlamC

Ψ ⊢𝑛 𝜎 ⊢𝑛 𝜎1 <: 𝜎

Ψ, x : 𝜎 ⊢𝑛 𝑒 ⇐ 𝜎2

Ψ ⊢𝑛 𝜆x : 𝜎. 𝑒 ⇐ 𝜎1 → 𝜎2

lt-sub

Ψ ⊢𝑛 𝑒 ⇒ 𝜎1
⊢𝑛 𝜎1 <: 𝜎2

Ψ ⊢𝑛 𝑒 ⇐ 𝜎2

lt-forall

Ψ ⊢𝑛+1 𝑒 ⇐ 𝜎 a𝑛+1

Ψ ⊢𝑛 𝑒 ⇐∀a. 𝜎
⊢𝑛 𝜎 ⊲ 𝜎1 → 𝜎2 (Matching)

lm-forall

⊢𝑛 𝜎 [a := 𝜏⩽𝑛] ⊲ 𝜎1 → 𝜎2

⊢𝑛 ∀a. 𝜎 ⊲ 𝜎1 → 𝜎2

lm-func

⊢𝑛 𝜎1 → 𝜎2 ⊲ 𝜎1 → 𝜎2

⊢𝑛 𝜎1 <: 𝜎2 (Subtyping)

ls-refl

⊢𝑛 𝜎 <: 𝜎

ls-func

⊢𝑛 𝜎3 <: 𝜎1 ⊢𝑛 𝜎2 <: 𝜎4

⊢𝑛 𝜎1 → 𝜎2 <: 𝜎3 → 𝜎4

ls-forallR

⊢𝑛+1 𝜎1 <: 𝜎2 a𝑛+1

⊢𝑛 𝜎1 <: ∀a. 𝜎2
ls-forallL

⊢𝑛 𝜎1 [a := 𝜏⩽𝑛] <: 𝜎2

⊢𝑛 ∀a. 𝜎1 <: 𝜎2

Fig. 3. Level-based declarative type system

type is the maximum level of its variables and type constructors. Therefore, closed types are always

at level zero. We write 𝜎⩽𝑛
to denote the type 𝜎 with the constraint that its level is at most 𝑛.

4.1 Typing
Fig. 3 presents the level-based typing rules, where both typing and subtyping are indexed by an

integer level 𝑛. Rule lt-lit and rule lt-var are straightforward.

Rule lt-lam again non-deterministically guesses a type 𝜏 for the variable x, with the important

constraint that 𝜏 can be at most level 𝑛, the current typing level. Rule lt-tlam, rule lt-app, and

rule lt-anno are self-explanatory. Notably, the matching judgment ⊲ is now also associated with a

level. Rule lt-app passes the current typing level to matching, and rule lm-forall instantiates the

polymorphic type with a type at most at level 𝑛.

Importantly, rule lt-let increments the level to 𝑛 + 1 when typing the expression 𝑒1. As a result,

lambdas within 𝑒1 can now guess a type at level 𝑛 + 1. After rule lt-let finishes typing 𝑒1, obtaining
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type 𝜎1, it generalizes all free variables at 𝑛 + 1 in 𝜎1, and adds x : ∀ftv𝑛+1 (𝜎1). 𝜎1 to the context

to type-check 𝑒2 at level 𝑛. Compared to the previous rule t-let for typing let expressions, this

rule does not require traversing the typing context. Rule lt-data type-checks a local datatype

declaration, where the level of T is at level 𝑛 + 1. The rule adds the type constructor and the

associated data constructors to the context type-check 𝑒 at level 𝑛 + 1, obtaining the result type

𝜎⩽𝑛
. Since 𝜎 is at most level 𝑛, it cannot contain T , ensuring that T does not escape from its scope.

Checking. Rule lt-lamC is straightforward. Rule lt-tlamC checks that the expected argument

type is a subtype of the parameter type, and adds x : 𝜎 to the context to check the body. Note that

the subtyping relation also takes the current typing level. Rule lt-sub checks that the inferred

type is a subtype of the checked type under the current typing level. Rule lt-forall checks the

expression against a polymorphic type. Here, we take a type variable at level 𝑛 + 1, and increment

the typing level. Since the type variable is at level 𝑛 + 1, it ensures that existing types in Ψ cannot

refer to a, without requiring traversing the typing context.

Subtyping. The subtyping judgment is also associated with a level. Of particular interest are

rule ls-forallR and rule ls-forallL. Specifically, rule ls-forallR skolemizes the polymorphic

type with a type variable at level 𝑛 + 1, and increments the subtyping level. Since the type 𝜎1 is

supposed to be at most level 𝑛, this ensures that a does not occur free in 𝜎1, without traversing 𝜎1.

Similar to the matching rule, Rule ls-forallL, instantiates the polymorphic type with a monotype

at most at level 𝑛. Note that since rule ls-forallR can increment the subtyping level, the level used

here can be greater than the typing level used when first entering subtyping.

4.2 Examples
To demonstrate how typing works, we show a few examples.

Generalization. First, consider let f = 𝜆x . x in f , whose typing derivation is given as follows.

•, x : a ⊢1 x ⇒ a a1

• ⊢1 𝜆x . x ⇒ a → a
lt-lam

f : ∀a. a → a ⊢0 f ⇒∀a. a → a
lt-var

• ⊢0 let f = 𝜆x . x in f ⇒∀a. a → a
lt-let

Note that when typing 𝜆x . x, we are at level 1. We assume a1 as a side condition, and we can assign

x : a, since rule lt-lam requires x : a⩽1
. As a result, ftv𝑛+1 (a → a) = a, and 𝑓 gets type ∀a. a → a.

Notably, using type variables from different levels in the typing derivation can yield different

types of the same expression. Specifically, consider the following derivation:

•, x : b ⊢1 x ⇒ b b0

• ⊢1 𝜆x . x ⇒ b → b
lt-lam

f : b → b ⊢0 f ⇒ b → b
lt-var

• ⊢0 let f = 𝜆x . x in f ⇒ b → b
lt-let

Here we use b0 as the type of x, and thus the type of f is not generalized. The same type can be

derived in the non-level-based system, since rule t-let may not generalize all free variables in 𝜎1.

Subtyping. As another example to demonstrate how the typing of a let binding and subtyping

could both increment the level, consider typing (let x = (𝜆f : 𝜎1. f 2) g in x), where

𝜎1 = (∀a b. a → b → b) 𝜎2 = (∀c. c → ∀d . d → d) Ψ = g : 𝜎2
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111:10 Anon.

We give the derivation below, where some intermediate subderivations are omitted:

Ψ, f : 𝜎1 ⊢1 f ⇒ 𝜎1

⊢1 𝜎1 ⊲ Int → b1 → b1 b11

Ψ, f : 𝜎1 ⊢1 f 2 ⇒ b1 → b1
lt-app

Ψ ⊢1 (𝜆f : 𝜎1 . f 2) ⇒ 𝜎1 → b1 → b1
lt-tlam

Ψ ⊢1 g ⇒ 𝜎2

ls-forallL

⊢3 a → ∀d . d → d <: a → b → b

⊢3 𝜎2 <: a → b → b a2 b3

⊢1 𝜎2 <: 𝜎1
ls-forallR

Ψ ⊢1 g ⇐ 𝜎1
lt-sub

Ψ ⊢1 (𝜆f : 𝜎1 . f 2) g ⇒ b1 → b1
lt-app

····· Ψ, x : ∀b1 . b1 → b1 ⊢0 x ⇒∀b1 . b1 → b1

Ψ ⊢0 let x = (𝜆f : 𝜎1 . f 2) g in x ⇒∀b1 . b1 → b1
lt-let

There are a few notable things. First, ⊢1 𝜎2 <: 𝜎1 holds, as we first skolemize 𝜎1 with a2 and
b3. Then, ⊢3 𝜎2 <: a → b → b holds, as subtyping is now at level 3, and we can instantiate

c with a2 and d with b3 respectively. On the other hand, ⊢1 𝜎1 <: 𝜎2 does not hold, as shown

not hold

⊢2 ∀b. c → b → b <: c → ∀d . d → d

⊢2 𝜎1 <: c → ∀d . d → d
ls-forallL

⊢1 𝜎1 <: 𝜎2
ls-forallR

in the derivation on the right. At the top of the

derivation, we would need to instantiate b with a

type at most at level 2. However, when d is skolem-

ized later, it will get a level 3.

Second, note that the type of the entire let binding,

(𝜆f : 𝜎1. f 2) g, has type (b1 → b1)⩽1
, given b11,

while the subtyping derivation used level 3. Thus, generalization of b1 → b1 only needs to consider

free variables at level 1, but not variables of higher levels, corresponding to rule lt-let.

5 Coq Mechanization
In this section, we establish the soundness and completeness of the level-based declarative type

system with respect to the non-level-based system. We begin by outlining the Coq mechanization

of the type system, which explicitly encodes level contexts to reason about level-related properties.

We then present soundness and completeness.

5.1 Coq Representation
We have assumed an implicit mapping that maps type variables to their levels, which also tracks

the levels of type constructors. To facilitate mechanization, we now make level contexts explicit:

level context Δ F • | Δ, a𝑛 | Δ, T𝑛

Level contexts Δ track the levels of both type variables (a𝑛) and type constructors (T𝑛
). As before,

we extend levels to types and contexts, writing Δ ⊢ 𝜎 : 𝑛 to denote that the level of 𝜎 is 𝑛, and

Δ ⊢ Ψ : 𝑛 to denote that the level of Ψ is 𝑛.

The typing judgments now incorporate a level context Δ, taking the form Δ;Ψ ⊢𝑛 𝑒 ⇒ 𝜎 and

Δ;Ψ ⊢𝑛 𝑒 ⇐ 𝜎 . Judgments including matching and subtyping are similarly extended with the level

context Δ. These rules are largely unchanged, except for the explicit level handling. For example,

rule lct-forall adds a𝑛+1 into the context. We assume distinct variables in Δ, which is enforced in

our mechanization with the locally nameless representation [Charguéraud 2012]. Thus rule lct-let

uses ftv𝑛+1Δ (𝜎) to generalize 𝑛 + 1 level variables within 𝜎 according to the level information in Δ.

lct-forall

Δ, a𝑛+1;Ψ ⊢𝑛+1 𝑒 ⇐ 𝜎

Δ;Ψ ⊢𝑛 𝑒 ⇐∀a. 𝜎

lct-let

Δ;Ψ ⊢𝑛+1 𝑒1 ⇒ 𝜎1 Δ;Ψ, x : ∀ftv𝑛+1Δ (𝜎1). 𝜎1 ⊢𝑛 𝑒2 ⇒ 𝜎2

Δ;Ψ ⊢𝑛 let x = 𝑒1 in 𝑒2 ⇒ 𝜎2
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The level context allows us to reason explicitly about level-related properties. As an example, we

prove that at typing level 𝑛, if all type variables and type constructors appearing in type context Ψ
have a level no greater than the current typing level (Δ ⊢ Ψ ⩽ 𝑛), then the inferred type also has a

level of at most 𝑛 (Δ ⊢ 𝜎 ⩽ 𝑛):

Lemma 5.1 (Level of inference mode). If Δ;Ψ ⊢𝑛 𝑒 ⇒ 𝜎 , and Δ ⊢ Ψ ⩽ 𝑛, then Δ ⊢ 𝜎 ⩽ 𝑛.

In typing, Δ ⊢ Ψ ⩽ 𝑛 will be maintained as an invariant; at the top level, typing starts with level 0

and an empty context, and Δ ⊢ • ⩽ 0 holds trivially. This justifies the use of ftv𝑛+1Δ in rule lt-let.

By explicitly reasoning about these invariants, we can now formally establish the equivalence

between the level-based and non-level-based versions of our type system.

5.2 Soundness and Completeness
Soundness. The soundness theorem follows directly. Notably, by maintaining the invariant that

all type variables and constructors have a level no greater than the current typing level, introducing

a type variable (e.g. rule lct-forall) or type constructor at level 𝑛 + 1 ensures freshness relative to

the current context. This allows us to establish soundness:

Theorem 5.2 (Soundness of level typing). Given Δ ⊢ Ψ ⩽ 𝑛,
(Inference) if Δ;Ψ ⊢𝑛 𝑒 ⇒ 𝜎 , then Ψ ⊢ 𝑒 ⇒ 𝜎 .
(Checking) if Δ;Ψ ⊢𝑛 𝑒 ⇐ 𝜎 where Δ ⊢ 𝜎 ⩽ 𝑛, then Ψ ⊢ 𝑒 ⇐ 𝜎 .

In other words, if an expression 𝑒 has type 𝜎 under level 𝑛 in level-based declarative typing system,

then 𝑒 also has type 𝜎 in the non-level-based declarative type system.

Level-related properties. Proving completeness is more subtle, as it requires us to show that for

any non-level-based typing Ψ ⊢ 𝑒 ⇔ 𝜎 , there exists a level context Δ such that Δ;Ψ ⊢𝑛 𝑒 ⇔ 𝜎 .

However, constructing such a Δ presents a few challenges. First, when typing an application 𝑒1 𝑒2,

we need to provide the same level context Δ to derive Δ;Ψ ⊢𝑛 𝑒1 ⇒ 𝜎 and Δ;Ψ ⊢𝑛 𝑒2 ⇐ 𝜎1. However,

the induction hypothesis provides two distinct level context, Δ1 and Δ2, for Δ1;Ψ ⊢𝑛 𝑒1 ⇒ 𝜎 and

Δ2;Ψ ⊢𝑛 𝑒2 ⇐ 𝜎1 respectively. Moreover, rule lct-let and rule lct-forall require finding a Δ
such that type context Ψ has a level no greater than the current typing level. Additionally, for

generalization, we must ensure that any fresh variables satisfying 𝑎 ∉ ftv (Ψ) (as in rule t-let)

must be assigned level 𝑛 + 1 in Δ, while other variables should not.

To address these challenges, we introduce auxiliary definitions that help with the union of two

level contexts. Specifically,

Definition 5.3 (Level compatibility). We say that Δ1 and Δ2 are compatible at level 𝑛, defined as

Δ1 ⊘𝑛 Δ2 ≜ ∀a𝑛1 (𝑜𝑟 T𝑛1 ) ∈ Δ1, 𝑛1 ⩽ 𝑛 =⇒ ∃𝑛2, 𝑛2 ⩽ 𝑛 ∧ a𝑛2 (𝑜𝑟 T𝑛2 ) ∈ Δ2.

Definition 5.4 (Level matching). We say that Δ1 and Δ2 match at level 𝑛, defined as

Δ1 ;𝑛 Δ2 ≜ ∀a𝑛1 (𝑜𝑟 T𝑛1 ) ∈ Δ1, 𝑛1 > 𝑛 =⇒ a𝑛1 (𝑜𝑟 T𝑛1 ) ∈ Δ2 .

Intuitively, these definitions capture the observations that levels of type variables and constructors

can be adjusted with respect to a typing level 𝑛. Specifically, compatibility states if a type variable

or constructor in Δ1 has a level no greater than 𝑛, its level in Δ2 remains no greater than 𝑛, though

the exact levels may differ. Level matching enforces that a type variable or constructor with a level

above 𝑛 in Δ1 retains the same level in Δ2.

Combining these two definitions, we can define level consistency between two level contexts:

Definition 5.5 (Consistency). Δ1 ⊗𝑛 Δ2 ≜ Δ1 ⊘𝑛 Δ2 ∧ Δ1 ;𝑛 Δ2.
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polytype 𝜎 F ∀a. 𝜎 | 𝜎1 → 𝜎2 | 𝜏
monotype 𝜏 F Int | a | T | 𝜏1 → 𝜏2 | 𝛼
term context Σ F • | Σ, x : 𝜎 | Σ,D : 𝜎

algorithmic context Γ,Θ,Δ F • | Γ, T𝑛 | Γ, a𝑛 | Γ, 𝛼𝑛 | Γ, 𝛼𝑛 = 𝜏

complete context Ω F • | Γ, T𝑛 | Γ, a𝑛 | Γ, 𝛼𝑛 = 𝜏

[Γ]𝜎 (Context Application)

[Γ]Int = Int [Γ] (𝜎1 → 𝜎2) = [Γ]𝜎1 → [Γ]𝜎2 [Γ]𝛼 = 𝛼 if 𝛼 ∉ Γ or 𝛼𝑛 ∈ Γ
[Γ]a = a [Γ] (∀a. 𝜎) = ∀a. [Γ]𝜎 [Γ]𝛼 = [Γ]𝜏 if 𝛼𝑛 = 𝜏 ∈ Γ
[Γ]T = T

Γ ⊢𝑛 𝜎 (Type Well-Formedness)

Γ ⊢𝑛 Int

a𝑚 ∈ Γ
𝑚 ⩽ 𝑛

Γ ⊢𝑛 a

T𝑚 ∈ Γ
𝑚 ⩽ 𝑛

Γ ⊢𝑛 T

Γ ⊢𝑛 𝜎1
Γ ⊢𝑛 𝜎2

Γ ⊢𝑛 𝜎1 → 𝜎2

𝛼𝑚 ∈ Γ
𝑚 ⩽ 𝑛

Γ ⊢𝑛 𝛼

𝛼𝑚 = 𝜏 ∈ Γ
𝑚 ⩽ 𝑛

Γ ⊢𝑛 𝛼

Γ, a𝑛 ⊢𝑛 𝜎

Γ ⊢𝑛 ∀a. 𝜎
Fig. 4. Syntax of the algorithmic system, context application, and well-formedness of types

Lemma 5.6 (Consistency preserves typing). Given Δ ⊢ Ψ ⩽ 𝑛, and Δ1 ⊗𝑛 Δ2, (1) if Δ1;Ψ ⊢𝑛 𝑒 ⇒ 𝜎 ,
then Δ2;Ψ ⊢𝑛 𝑒 ⇒ 𝜎 ; and (2) if Δ1;Ψ ⊢𝑛 𝑒 ⇐ 𝜎 where Δ ⊢ 𝜎 ⩽ 𝑛, then Δ2;Ψ ⊢𝑛 𝑒 ⇐ 𝜎 .

With these definitions and properties, we can now rename variables and adjust their levels in

the level contexts when needed to resolve the challenges.

Completeness. We prove completeness:

Theorem 5.7 (Completeness of level typing).
(Inference) If Ψ ⊢ 𝑒 ⇒ 𝜎 , then there exists Δ and 𝑛, such that Δ ⊢ Ψ ⩽ 𝑛 and Δ;Ψ ⊢𝑛 𝑒 ⇒ 𝜎 .
(Checking) If Ψ ⊢ 𝑒 ⇐ 𝜎 , then there exist Δ and 𝑛, such that Δ ⊢ Ψ ⩽ 𝑛 and Δ ⊢ 𝜎 ⩽ 𝑛 and

Δ;Ψ ⊢𝑛 𝑒 ⇐ 𝜎 .

With that, we concluded the equivalence between the level and non-level version of the type system.

6 Algorithmic Type System with Levels
This section first presents the algorithmic type system with levels, and then shows that the algo-

rithmic system is sound and complete with respect to the level-based declarative type system.

Fig. 4 presents the syntax of the algorithmic system. Monomorphic types are extended with

unification variables 𝛼 , representing unknown types that will be inferred.

We have two typing contexts: a term context Σ that maps local variables (x : 𝜎) and data con-

structors (D : 𝜎) to their types, and an algorithmic context Γ that tracks levels of type constructors

(T𝑛
), type variables (a𝑛), and unification variables (𝛼𝑛). Additionally, Γ records the solutions for

unification variables (𝛼𝑛 = 𝜏), with the invariant that 𝜏 has a level no greater than 𝑛. A complete

context Ω is an algorithmic context in which all unification variables have been solved. Notably,

the contexts are not ordered, unlike Dunfield and Krishnaswami [2013]. Since contexts contain

solutions for unification variables, we use [Γ]𝜎 to denote the type obtained by applying Γ as a

substitution to 𝜎 .

Well-formedness of types Γ ⊢𝑛 𝜎 denotes that 𝜎 is well-typed under the algorithmic context Γ at

level 𝑛. It checks that all type variables and unification variables are bound in the context, and that

the levels of those variables are no greater than the typing level.
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Γ p Σ ⊢𝑛 𝑒 ⇒ 𝜎 ⊣ Δ (
Algorithmic Level Type Inference

Inputs: Γ, Σ, 𝑛, 𝑒 ; Outputs: 𝜎 , Δ
)

at-lit

Γ p Σ ⊢𝑛 𝑖 ⇒ Int ⊣ Γ

at-dctor

D : 𝜎 ∈ Σ

Γ p Σ ⊢𝑛 D ⇒ 𝜎 ⊣ Γ

at-var

x : 𝜎 ∈ Σ

Γ p Σ ⊢𝑛 x ⇒ 𝜎 ⊣ Γ

at-lam

Γ, 𝛼𝑛 p Σ, x : 𝛼 ⊢𝑛 𝑒 ⇒ 𝜎 ⊣ Δ

Γ p Σ ⊢𝑛 𝜆x . 𝑒 ⇒ 𝛼 → 𝜎 ⊣ Δ

at-tlam

Γ ⊢𝑛 𝜎1
Γ p Σ, x : 𝜎1 ⊢𝑛 𝑒 ⇒ 𝜎2 ⊣ Δ

Γ p Σ ⊢𝑛 𝜆x : 𝜎1. 𝑒 ⇒ 𝜎1 → 𝜎2 ⊣ Δ

at-anno

Γ ⊢𝑛 𝜎

Γ p Σ ⊢𝑛 𝑒 ⇐ 𝜎 ⊣ Δ

Γ p Σ ⊢𝑛 𝑒 : 𝜎 ⇒ 𝜎 ⊣ Δ
at-app

Γ p Σ ⊢𝑛 𝑒1 ⇒ 𝜎 ⊣ Θ1 Θ1 ⊢𝑛 [Θ1]𝜎 ⊲ 𝜎1 → 𝜎2 ⊣ Θ2 Θ2 p Σ ⊢𝑛 𝑒2 ⇐ [Θ2]𝜎1 ⊣ Δ

Γ p Σ ⊢𝑛 𝑒1 𝑒2 ⇒ 𝜎2 ⊣ Δ
at-let

Γ p Σ ⊢𝑛+1 𝑒1 ⇒ 𝜎1 ⊣ Θ ftv𝑛+1Θ ( [Θ]𝜎1) = 𝛼 Θ p Σ, x : ∀𝑎. (( [Θ]𝜎1) [𝛼 := 𝑎]) ⊢𝑛 𝑒2 ⇒ 𝜎2 ⊣ Δ

Γ p Σ ⊢𝑛 let x = 𝑒1 in 𝑒2 ⇒ 𝜎2 ⊣ Δ
at-data

Γ ⊢𝑛 𝜎 𝑗
𝑗
𝑖

Γ, T𝑛+1 p Σ, Di : 𝜎j
j → T

i
⊢𝑛+1 𝑒 ⇒ 𝜎 ⊣ Δ Δ ⊢𝑛 𝜎

Γ p Σ ⊢𝑛 data T = Di 𝜎j
j
i
in 𝑒 ⇒ 𝜎 ⊣ Δ\T

Γ p Σ ⊢𝑛 𝑒 ⇐ 𝜎 ⊣ Δ (
Algorithmic Level Type Checking

Inputs: Γ, Σ, 𝑛, 𝑒 , 𝜎 ; Output: Δ
)

at-lamC

Γ p Σ, x : 𝜎1 ⊢𝑛 𝑒 ⇐ 𝜎2 ⊣ Δ

Γ p Σ ⊢𝑛 𝜆x . 𝑒 ⇐ 𝜎1 → 𝜎2 ⊣ Δ

at-tlamC

Γ ⊢𝑛 𝜎

Γ ⊢𝑛 𝜎1 <: 𝜎 ⊣ Θ Θ p Σ, x : 𝜎 ⊢𝑛 𝑒 ⇐ [Θ]𝜎2 ⊣ Δ2

Γ p Σ ⊢𝑛 𝜆x : 𝜎. 𝑒 ⇐ 𝜎1 → 𝜎2 ⊣ Δ2

at-sub

Γ p Σ ⊢𝑛 𝑒 ⇒ 𝜎1 ⊣ Θ Θ ⊢𝑛 [Θ]𝜎1 <: [Θ]𝜎2 ⊣ Δ

Γ p Σ ⊢𝑛 𝑒 ⇐ 𝜎2 ⊣ Δ

at-forall

Γ, a𝑛+1 p Σ ⊢𝑛+1 𝑒 ⇐ 𝜎 ⊣ Δ

Γ p Σ ⊢𝑛 𝑒 ⇐∀a. 𝜎 ⊣ Δ

Γ ⊢𝑛 𝜎 ⊲ 𝜎1 → 𝜎2 ⊣ Δ (
Algorithmic Matching

Inputs: Γ, 𝑛, 𝜎 ; Outputs: 𝜎1, 𝜎2, Δ
)

am-forall

Γ, 𝛼𝑛 ⊢𝑛 𝜎 [a := 𝛼] ⊲ 𝜎1 → 𝜎2 ⊣ Δ

Γ ⊢𝑛 ∀a. 𝜎 ⊲ 𝜎1 → 𝜎2 ⊣ Δ

am-func

Γ ⊢𝑛 𝜎1 → 𝜎2 ⊲ 𝜎1 → 𝜎2 ⊣ Γ
am-uvar

Γ, 𝛼𝑚, Γ′ ⊢𝑛 𝛼 ⊲ 𝛼1 → 𝛼2 ⊣ Γ, 𝛼𝑚 = 𝛼1 → 𝛼2, Γ
′, 𝛼𝑚

1
, 𝛼𝑚

2

Fig. 5. Algorithmic typing

6.1 Algorithmic Typing
Fig. 5 presents the algorithmic typing rules. The typing judgment Γ p Σ ⊢𝑛 𝑒 ⇒ 𝜎 ⊣ Δ (and

Γ p Σ ⊢𝑛 𝑒 ⇐ 𝜎 ⊣ Δ) reads: under the algorithmic context Γ and context Σ, at typing level 𝑛,

expression 𝑒 infers (or checks against) type 𝜎 , updating the algorithmic context to Δ. Intuitively,
the algorithmic context is threaded through algorithmic judgments and accumulates information.

Rule at-lit, rule at-dctor, and rule at-var are straightforward, and all return the algorithmic

context unchanged. Rule at-lam, instead of guessing a monotype for x as in the declarative system,
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Γ ⊢𝑛 𝜎1 <: 𝜎2 ⊣ Δ (
Algorithmic Subtyping

Inputs: Γ, 𝑛, 𝜎1, 𝜎2; Output: Δ
)

as-var

Γ ⊢𝑛 a <: a ⊣ Γ

as-int

Γ ⊢𝑛 Int <: Int ⊣ Γ

as-tyctor

Γ ⊢𝑛 T <: T ⊣ Γ

as-uvar

Γ ⊢𝑛 𝛼 <: 𝛼 ⊣ Γ
as-func

Γ ⊢𝑛 𝜎3 <: 𝜎1 ⊣ Θ
Θ ⊢𝑛 [Θ]𝜎2 <: [Θ]𝜎4 ⊣ Δ

Γ ⊢𝑛 𝜎1 → 𝜎2 <: 𝜎3 → 𝜎4 ⊣ Δ

as-forallR

Γ, a𝑛+1 ⊢𝑛+1 𝜎1 <: 𝜎2 ⊣ Δ

Γ ⊢𝑛 𝜎1 <: ∀a. 𝜎2 ⊣ Δ

as-forallL

Γ, 𝛼𝑛 ⊢𝑛 𝜎1 [a := 𝛼] <: 𝜎2 ⊣ Δ

Γ ⊢𝑛 ∀a. 𝜎1 <: 𝜎2 ⊣ Δ
as-solveL

𝛼 ∉ ftv (𝜎)
Γ, 𝛼𝑚, Γ′ ⊢ 𝜎 ⇝−

𝑚 𝜏 ⊣ Δ, 𝛼𝑚,Δ′

Γ, 𝛼𝑚, Γ′ ⊢𝑛 𝛼 <: 𝜎 ⊣ Δ, 𝛼𝑚 = 𝜏,Δ′

as-solveR

𝛼 ∉ ftv (𝜎)
Γ, 𝛼𝑚, Γ′ ⊢ 𝜎 ⇝+

𝑚 𝜏 ⊣ Δ, 𝛼𝑚,Δ′

Γ, 𝛼𝑚, Γ′ ⊢𝑛 𝜎 <: 𝛼 ⊣ Δ, 𝛼𝑚 = 𝜏,Δ′

Fig. 6. Algorithmic subtyping

Γ ⊢ 𝜎 ⇝±
𝑚 𝜏 ⊣ Δ polarity ±F + | − (

Polymorphic Promotion
Inputs: Γ, 𝜎 , ±,𝑚; Outputs: 𝜏 , Δ

)

pr-int

Γ ⊢ Int⇝±
𝑚 Int ⊣ Γ

pr-tyctor

T𝑚1 ∈ Γ 𝑚1 ⩽𝑚2

Γ ⊢ T ⇝±
𝑚2

T ⊣ Γ

pr-sk

a𝑚1 ∈ Γ 𝑚1 ⩽𝑚2

Γ ⊢ a⇝±
𝑚2

a ⊣ Γ
pr-uvar

𝛼𝑚1 ∈ Γ 𝑚1 ⩽𝑚2

Γ ⊢ 𝛼 ⇝±
𝑚2

𝛼 ⊣ Γ

pr-uvarPr

𝑚1 > 𝑚2

Γ, 𝛼𝑚1

1
, Γ′ ⊢ 𝛼1 ⇝±

𝑚2

𝛼2 ⊣ Γ, 𝛼𝑚1

1
= 𝛼2, Γ

′, 𝛼𝑚2

2

pr-func

Γ ⊢ 𝜎1 ⇝∓
𝑚 𝜏1 ⊣ Θ

Θ ⊢ [Θ]𝜎2 ⇝±
𝑚 𝜏2 ⊣ Δ

Γ ⊢ 𝜎1 → 𝜎2 ⇝
±
𝑚 𝜏1 → 𝜏2 ⊣ Δ

pr-forallPos

Γ, 𝛼𝑚 ⊢ 𝜎 [a := 𝛼] ⇝+
𝑚 𝜏 ⊣ Δ

Γ ⊢ ∀a. 𝜎 ⇝+
𝑚 𝜏 ⊣ Δ

pr-forallNeg

Γ, a𝑚+1 ⊢ 𝜎 ⇝−
𝑚 𝜏 ⊣ Δ

Γ ⊢ ∀a. 𝜎 ⇝−
𝑚 𝜏 ⊣ Δ

Fig. 7. Polymorphic promotion

creates a new unification variable 𝛼𝑛 of the current typing level in the algorithmic context, and

adds x : 𝛼 to the context. We assume that new unification variables introduced to the context are

always fresh. By assigning 𝛼𝑛 , we constrain its solution to a type with a level no greater than 𝑛,

thus effectively ensuring that x gets a type of a level no greater than 𝑛. The rule then proceeds to

type-check the lambda body, updating the algorithmic context accordingly. Rule at-tlam simply

adds x : 𝜎1 to the context to type-check the body. Rule at-anno checks the expression against the

provided type annotation.

Rule at-app first infers the type of 𝑒1, obtaining 𝜎 and updating the algorithmic context to Θ1.

Next, the rule applies the matching judgment, given at the bottom of Fig. 5, to instantiate [Θ1]𝜎
to a function type. In the algorithmic system, the matching judgment takes both the typing level

and the algorithmic context. There are three rules. Rule am-forall instantiates a polymorphic

type with a new unification variable of the given level 𝑛, and matches the body. Rule am-func

directly returns the input function. Lastly, rule am-uvar handles unification variables. In this case,

the variable must be unsolved, at some level𝑚. Since the variable’s solution must be a function, we

create two new unification variables 𝛼𝑚
1
and 𝛼𝑚

2
, both at the level as𝑚, and set 𝛼𝑚 = 𝛼1 → 𝛼2. Once

matching [Θ1]𝜎 in rule at-app returns 𝜎1 → 𝜎2, the rule checks the argument with the expected

type [Θ2]𝜎1, resulting in the final algorithmic context Δ.
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Rule at-let type-checks let expressions. The rule begins by incrementing the typing level to

type-check 𝑒1, obtaining 𝜎1. Then, it collects the unsolved unification variables ftv𝑛+1Θ at level 𝑛 + 1

within [Θ]𝜎1 (using the level information in Θ), resulting in a set of unification variables 𝛼 . Next,

it generalizes these unification variables by substituting them with fresh type variables 𝑎 within

[Θ]𝜎1, obtaining ∀𝑎. (( [Θ]𝜎1) [𝛼 := 𝑎]). The unification variables 𝛼 will no longer be useful and

may be removed from the algorithmic context, although this is not strictly required. Finally, it adds

x of the generalized type to the context, and type-checks the let body at level 𝑛. Lastly, rule at-data

adds T𝑛+1
to the algorithmic context and associated data constructors to the context to type-check 𝑒

under 𝑛 + 1, obtaining 𝜎 . It then checks that 𝜎 is well-typed under level 𝑛. The returned algorithmic

context is Δ\T , which removes all the occurrences of T𝑛+1
from the output context and whole

complete definition can be found in the appendix.

Type checking. For checking, we maintain the invariant that the type used for checking is fully

substituted by the current algorithmic context. Rule at-lamC is self-explanatory. Rule at-tlamC

checks that 𝜎1 is a subtype of 𝜎 , where the subtyping judgment takes the algorithmic context and

returns a new Θ. Since Θ may contain new solutions for unification variables, we apply it to 𝜎2
when checking the lambda body. Rule at-sub first infers the type of 𝑒 , obtaining 𝜎1 and a new Θ.
The rule then applies the context to the types for subtyping, and thus the input types to subtyping

are also fully substituted. Lastly, rule at-forall adds the type variable a𝑛+1 to the algorithmic

context and increments the typing level to check 𝑒 .

6.2 Subtyping
Fig. 6 presents the algorithmic subtyping rules. The judgment Γ ⊢𝑛 𝜎1 <: 𝜎2 ⊣ Δ reads: under the

algorithmic context Γ and at level 𝑛, type 𝜎1 is a subtype of 𝜎2, updating the algorithmic context to

Δ. We maintain the invariant that the input types 𝜎1 and 𝜎2 are fully substituted under Γ, and thus

rules as-solveL and as-solveR only deal with cases with unsolved unification variables.

The first four rules are straightforward. In rule as-func, subtyping is contravariant over function

argument types, and covariant over return types. Note that the rule applies the context Θ to 𝜎2 and

𝜎4, as Θ may contain new information about unification variables. Rule as-forallR skolemizes

the polymorphic type with a new type variable a𝑛+1, and increments the subtyping level. Rule as-

forallL instantiates the polymorphic type with a new unification variable of the current level.

Of particular interest are the last two rules, which involve unification variables. Rule as-solveL

requires 𝛼 to be a subtype of 𝜎 , while rule as-solveR requires 𝜎 to be a subtype of 𝛼 . In both cases,

the rule performs occurs-check (𝛼 ∉ ftv (𝜎)). Then, it uses the promotion judgment to promote

𝜎 to a monotype 𝜏 . This process is discussed below. The result monotype 𝜏 is guaranteed to be

well-typed at the promotion level𝑚. Therefore, we set 𝛼𝑚 = 𝜏 in the output algorithmic context.
5

Polymorphic promotion. Fig. 7 presents the novel polymorphic promotion judgment. The judgment

Γ ⊢ 𝜎 ⇝±
𝑚 𝜏 ⊣ Δ reads: under the algorithmic context Γ and at level𝑚, promoting type 𝜎 under

polarity ± produces a monotype 𝜏 , updating the algorithmic context to Δ. Intuitively, the polarity ±
indicates that the type being promoted is a subtype (+) or supertype (−) of a type variable of level
𝑚. Since𝑚 indicates the promoted level, it never changes in the rules. Recall that rule as-solveL

uses promotion under (−), while rule as-solveR uses it under (+).
Rule pr-int and rule pr-tyctor return the type unchanged. Rule pr-sk promotes a type variable

a𝑚1
. This rule requires that the variable’s level 𝑚1 be no greater than the promotion level 𝑚2

(𝑚1 ⩽𝑚2), as the promotion result will become part of the solution for a unification variable at

5
There is overlapping between, e.g. rule as-solveL and rule as-forallL. Such overlap is benign, as their application

produces equivalent results. Deterministic behavior could be enforced with additional side conditions.
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111:16 Anon.

level𝑚2, which cannot refer to type variables of higher levels. In other words, promoting a type

variable can (correctly) fail. Such failure corresponds to the case where a type variable would

otherwise escape its scope through a unification variable.

Promoting unification variables involves two rules: rule pr-uvar and rule pr-uvarPr. Intuitively,

a unification variable at a wider scope can be promoted to a smaller scope for it to be part of a

solution for a unification variable with a smaller scope. Specifically, if the unification variable’s level

is no greater than the promotion level, rule pr-uvar returns the variable unchanged. Otherwise,

rule pr-uvarPr adjusts the level by introducing a new unification variable 𝛼
𝑚2

2
at level𝑚2, and

setting 𝛼
𝑚1

1
= 𝛼2.

Rule pr-func promotes function types. Due to contravariant function typing, the rule first

promotes the argument type under the flipped polarity (denoted as ∓), obtaining 𝜏1 and Θ. Then, it
promotes the result type [Θ]𝜎2 to 𝜏2 under the original polarity. The final promoted type is 𝜏1 → 𝜏2.

Promoting polymorphic types depends on polarity. Rule pr-forallPos promotes a polymorphic

type ∀a. 𝜎 under (+). This means that the polymorphic type ∀a. 𝜎 needs to be a subtype of a

monotype. Thus, we instantiate a with a fresh unification variable 𝛼𝑚 of the promotion level𝑚.

Conversely, rule pr-forallNeg promotes a polymorphic type under (−), which requires ∀a. 𝜎 to

be a supertype of a monotype. The rule instantiates a with a fresh type variable at level𝑚 + 1,

while promotion stays at level𝑚, effectively preventing a from appearing in 𝜎 .

Examples. To see how polarity works, consider the following derivations, with 𝛼0
, for ∀b. b →

b <:𝛼 on the left, and 𝛼 <:∀b. b → b on the right, respectively:

𝛼0, ˆ𝛽0 ⊢ ˆ𝛽 → ˆ𝛽 ⇝+
0

ˆ𝛽 → ˆ𝛽 ⊣ 𝛼0, ˆ𝛽0

𝛼0 ⊢ ∀b. b → b⇝+
0

ˆ𝛽 → ˆ𝛽 ⊣ 𝛼0, ˆ𝛽0
pr-forallPos

𝛼0 ⊢0 ∀b. b → b <: 𝛼 ⊣ 𝛼0 = ˆ𝛽 → ˆ𝛽, ˆ𝛽0
as-solveR

𝛼0, b1 ⊢ b → b⇝−
0
? ⊣ ?

𝛼0 ⊢ ∀b. b → b⇝−
0
? ⊣ ?

pr-forallNeg

𝛼0 ⊢0 𝛼 <: ∀b. b → b ⊣ ?
as-solveL

In the left case, we promote ∀b. b → b under (+), allowing us to instantiate b with
ˆ𝛽0. This is

valid as ∀b. b → b is indeed a subtype of any monotype 𝜏 → 𝜏 . Conversely, in the right case, we

instantiate b with b1, and promoting b will fail, since rule pr-sk does not apply. This failure is

expected, as indeed no monotype can be a subtype of ∀b. b → b.
We now consider a larger example to see how things work together. Specifically, consider typing

(𝜆x . let y = f x in y) under Σ = f : 𝜎 , where 𝜎 = ∀a. (a → a) → a, with the following derivation:

D
𝛼0 p Σ, x : 𝛼 ⊢1 f x ⇒ ˆ𝛽 ⊣ Δ3 ftv1Δ3

( [Δ3] ˆ𝛽) = ∅ Δ3 p Σ, x : 𝛼, y :
ˆ𝛽1 ⊢0 y ⇒ ˆ𝛽1 ⊣ Δ3

𝛼0 p Σ, x : 𝛼 ⊢0 (let y = f x in y) ⇒ ˆ𝛽1 ⊣ Δ3

at-let

• p Σ ⊢0 (𝜆x . let y = f x in y) ⇒ 𝛼 → ˆ𝛽1 ⊣ Δ3

at-lam

Here, rule at-lam creates a new unification variable 𝛼0
as the type of x : 𝛼 . Rule at-let type-checks

f x, and generalizes the result as the type of y. The derivation D is given in Fig. 8.

There are a few notable things. First, at 1 , we match 𝑓 ’s type 𝜎 to ( ˆ𝛽 → ˆ𝛽) → ˆ𝛽 , with ˆ𝛽1.

Then, rule at-sub checks if x’s type 𝛼 is a subtype of the expected argument type
ˆ𝛽 → ˆ𝛽 . At 2 ,

rule as-solveL applies, promoting
ˆ𝛽 → ˆ𝛽 under 0, which is 𝛼 ’s level. Rule pr-uvarPr promotes

ˆ𝛽

by creating a new unification variable
ˆ𝛽0
1
, and sets

ˆ𝛽1 = ˆ𝛽1, effectively lowering
ˆ𝛽’s level to 0. Then,

rule pr-uvar promotes [Δ2] ˆ𝛽 = ˆ𝛽1, returning ˆ𝛽1. Therefore, at 3 , promotion succeeds, and we set

𝛼 = ˆ𝛽1 → ˆ𝛽1. As the final result, rule at-app returns ˆ𝛽 and the typing context Δ3.

Returning to rule at-let, there are no level 1 variables within [Δ3] ˆ𝛽 = ˆ𝛽1. Thus y has type
ˆ𝛽1,

and the final type is 𝛼 → ˆ𝛽1.
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Δ1 = 𝛼0, ˆ𝛽1

Δ2 = 𝛼0, ˆ𝛽1 = ˆ𝛽1 ,
ˆ𝛽0
1

Δ3 = 𝛼0 = ˆ𝛽1 → ˆ𝛽1 ,
ˆ𝛽1 = ˆ𝛽1, ˆ𝛽

0

1

1

𝛼0 p Σ, x : 𝛼 ⊢1 f ⇒ 𝜎 ⊣ 𝛼0
𝛼0 ⊢1 𝜎 ⊲ ( ˆ𝛽 → ˆ𝛽) → ˆ𝛽 ⊣ Δ1

Δ1 p Σ, x : 𝛼 ⊢1 x ⇒ 𝛼 ⊣ Δ1

pr-uvarPr

Δ1 ⊢ ˆ𝛽 ⇝+
0

ˆ𝛽1 ⊣ Δ2

pr-uvar

Δ2 ⊢ [Δ2] ˆ𝛽 ⇝−
0

ˆ𝛽1 ⊣ Δ2

2 Δ1 ⊢ ˆ𝛽 → ˆ𝛽 ⇝−
0

ˆ𝛽1 → ˆ𝛽1 ⊣ Δ2

as-func

Δ1 ⊢1 𝛼 <: ˆ𝛽 → ˆ𝛽 ⊣ Δ3 3

as-solveL

Δ1 p Σ, x : 𝛼 ⊢1 x ⇐ ˆ𝛽 → ˆ𝛽 ⊣ Δ3

at-sub

𝛼0 p Σ, x : 𝛼 ⊢1 f x ⇒ ˆ𝛽 ⊣ Δ3

at-app

Fig. 8. Example derivation

Γ ⊢𝑛 Σ (Term Context Well-Formedness)

Γ ⊢𝑛 •
Γ ⊢𝑛 𝜎 Γ ⊢𝑛 Σ x ∉ dom(Σ)

Γ ⊢𝑛 Σ, x : 𝜎

Γ ⊢𝑛 𝜎 Γ ⊢𝑛 Σ D ∉ dom(Σ)
Γ ⊢𝑛 Σ,D : 𝜎

Γ ⊢𝑛 Δ (Algorithmic Context Well-Formedness)

Γ ⊢𝑛 •
Γ ⊢𝑛 Δ a ∉ Δ 𝑚 ⩽ 𝑛

Γ ⊢𝑛 Δ, a𝑚
Γ ⊢𝑛 Δ T ∉ Δ 𝑚 ⩽ 𝑛

Γ ⊢𝑛 Δ, T𝑚

Γ ⊢𝑛 Δ 𝛼 ∉ Δ 𝑚 ⩽ 𝑛

Γ ⊢𝑛 Δ, 𝛼𝑚
Γ ⊢𝑛 Δ Γ ⊢𝑚 𝜏 𝛼 ∉ ftv ( [Δ]𝜏) 𝛼 ∉ Δ 𝑚 ⩽ 𝑛

Γ ⊢𝑛 Δ, 𝛼𝑚 = 𝜏

Fig. 9. Well-formedness of contexts

Γ −→ Δ (Context Extension)

• −→ •
Γ −→ Δ

Γ, a𝑛 −→ Δ, a𝑛
Γ −→ Δ

Γ −→ Δ, a𝑛
Γ −→ Δ

Γ, T𝑛 −→ Δ, T𝑛

Γ −→ Δ

Γ −→ Δ, T𝑛

Γ −→ Δ

Γ, 𝛼𝑛 −→ Δ, 𝛼𝑛
Γ −→ Δ

Γ −→ Δ, 𝛼𝑛
Γ [𝛼 := 𝜏] −→ Δ[𝛼 := 𝜏]

Γ, 𝛼𝑛 −→ Δ, 𝛼𝑛 = 𝜏

Γ [𝛼 := 𝜏] −→ Δ[𝛼 := 𝜏 ′] [Δ]𝜏 = [Δ]𝜏 ′

Γ, 𝛼𝑛 = 𝜏 −→ Δ, 𝛼𝑛 = 𝜏 ′
Γ −→ Δ[𝛼 := 𝜏]
Γ −→ Δ, 𝛼𝑛 = 𝜏

Fig. 10. Context extension

6.3 Soundness
We prove that the algorithm is sound and complete (§6.4) with respect to the declarative system.

We start with definitions for reasoning about contexts.

Context definitions. Fig. 9 defines well-formedness of contexts. The judgment Γ ⊢𝑛 Σ states that

the term context Σ is well-formed under the algorithmic context Γ at level 𝑛. The judgment ensures

that all types in Σ are well-formed under Γ at level 𝑛.

The judgment Γ ⊢𝑛 Δ states that Δ is well-typed under Γ at level 𝑛, ensuring that all variables in

Δ have levels no greater than 𝑛. The only interesting case is the last rule, which checks that 𝜏 is

well-formed at level𝑚, with𝑚 ⩽ 𝑛. Additionally, the rule checks that 𝛼 is not free in [Δ]𝜏 . Lastly,
it also requires Δ to be well-formed. Intuitively, we need Γ as Δ may still refer to 𝛼 .
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We write Γ ⊢𝑛 Γ, or often just Γ𝑛 , to denote that a context Γ is well-formed under itself at level 𝑛.

When the level does not matter, we also write Γ∞ to mean that Γ is well-formed at some level.

Fig. 10 defines context extension, where the judgment Γ −→ Δ states that Γ is extended by Δ.
Intuitively, context extension expresses a form of information increase, where Δ may contain more

variables or solutions for existing variables. The last three rules substitute the solution for 𝛼 in the

rest of the contexts, since the contexts may still refer to 𝛼 .

Soundness. We now establish soundness, starting from soundness of promotion. Notably, since

Ω is a complete context with all unification variables resolved, [Ω]𝜎 produces a declarative type

for any well-formed type 𝜎 .

Lemma 6.1 (Soundness of promotion). If Γ∞ and Γ ⊢𝑛 𝜎 and Δ −→ Ω and Ω∞, we have:
(1) if Γ ⊢ 𝜎 ⇝+

𝑚 𝜏 ⊣ Δ, then ⊢𝑚 [Ω]𝜎 <: [Ω]𝜏 .
(2) if Γ ⊢ 𝜎 ⇝−

𝑚 𝜏 ⊣ Δ, then ⊢𝑚 [Ω]𝜏 <: [Ω]𝜎 ;

The lemma captures the essence of promotion: promoting a polymorphic type 𝜎 under positive

polarity produces a supertype of 𝜎 , while promoting it under negative polarity produces a subtype.

With that, we prove the soundness of subtyping:

Theorem 6.2 (Soundness of subtyping). If Γ∞ and Δ∞ and Γ ⊢𝑛 𝜎1 and Γ ⊢𝑛 𝜎2 and Γ ⊢𝑛 𝜎1 <: 𝜎2 ⊣
Δ where Δ −→ Ω and Ω∞ then ⊢𝑛 [Ω]𝜎1 <: [Ω]𝜎2.

Lastly, we prove the soundness of typing, where we extend context application to term contexts,

and thus [Ω]Σ produces a declarative context:

Theorem 6.3 (Soundness of typing). Given Δ −→ Ω, where Γ∞, Δ∞, and Ω∞,
(Inference) If Γ ⊢𝑛 Σ and Γ p Σ ⊢𝑛 𝑒 ⇒ 𝜎 ⊣ Δ then [Ω]Σ ⊢𝑛 [Ω]𝑒 ⇒ [Ω]𝜎 .
(Checking) If Γ ⊢𝑛 Σ and Γ ⊢𝑛 𝜎 and Γ p Σ ⊢𝑛 𝑒 ⇐ 𝜎 ⊣ Δ then [Ω]Σ ⊢𝑛 [Ω]𝑒 ⇐ [Ω]𝜎 .

6.4 Completeness
We now move to completeness. We start with completeness of promotion.

Lemma 6.4 (Completeness of promotion). If Γ −→ Ω and Γ∞ and Ω∞ and Γ ⊢𝑛 𝜏 ′, then:
• if ⊢𝑛 [Ω]𝜏 ′ <: [Ω]𝜎 then there exist Δ and Ω′ such that Δ −→ Ω′ and Ω −→ Ω′ and Γ ⊢ 𝜎 ⇝−

𝑚

𝜏 ⊣ Δ where [Ω′]𝜏 = [Ω′]𝜏 ′;
• if ⊢𝑛 [Ω]𝜎 <: [Ω]𝜏 ′ then there exist Δ and Ω′ such that Δ −→ Ω′ and Ω −→ Ω′ and Γ ⊢ 𝜎 ⇝+

𝑚

𝜏 ⊣ Δ where [Ω′]𝜏 = [Ω′]𝜏 ′.

Note that Ω and Δ may contain different but equivalent solutions for unification variables, such as

Ω = (𝛼0 = Int → Int) and Δ = (𝛼0 = ˆ𝛽 → ˆ𝛽, ˆ𝛽0 = Int). Therefore, we show that there is a context

Ω′
that extends both Δ and Ω. The lemma states that subtyping between a polymorphic type and a

monotype can be resolved by promoting the polymorphic type to 𝜏 , with [Ω′]𝜏 = [Ω′]𝜏 ′.
We proceed to completeness of subtyping and typing:

Theorem 6.5 (Completeness of subtyping). If Γ −→ Ω, Γ ⊢𝑛 𝜎1, Γ ⊢𝑛 𝜎2, and ⊢𝑛 [Ω]𝜎1 <: [Ω]𝜎2
then there exist Δ and Ω′ such that Δ −→ Ω′ and Ω −→ Ω′ and Γ ⊢𝑛 [Γ]𝜎1 <: [Γ]𝜎2 ⊣ Δ.

Theorem 6.6 (Completeness of typing). Given Γ −→ Ω and Γ∞ and Ω∞ and Γ ⊢𝑛 Σ:
(Inference) If [Ω]Σ ⊢𝑛 𝑒 ⇒ 𝜎 and ⊢𝑛 [Ω]Σ′ <: [Ω]Σ, there exist Δ, Ω′, and 𝜎 ′ such that Δ −→ Ω′

and Ω −→ Ω′ and Γ p Σ′ ⊢𝑛 𝑒 ⇒ 𝜎 ′ ⊣ Δ and ⊢𝑛 [Ω′]𝜎 ′ <: 𝜎 .
(Checking) If [Ω]Σ ⊢𝑛 𝑒 ⇐ [Ω]𝜎 and Γ ⊢𝑛 𝜎 then there exist Δ and Ω′ such that Δ −→ Ω′ and

Ω −→ Ω′ and Γ p Σ ⊢𝑛 𝑒 ⇐ [Γ]𝜎 ⊣ Δ.
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Notably, completeness of inference allows algorithmic typing to produce a more general type than

the declarative system, since the declarative system may not always generalize a let binding (§4.2).

Thus, the theorem uses notion of context subtyping, denoted as ⊢𝑛 Ψ1 <: Ψ2, where Ψ1 assigns more

general types to the same binding compared to Ψ2, and the inferred type is also more general.

7 Implementation
We have implemented level-based type inference for the Koka language [Leijen 2013], and included

the modified Koka compiler in the supplementary materials.

Compiler implementation. Koka supports both let generalization and higher-rank polymorphism.

Following the traditional approach, the existing implementation traverses the entire typing context

to collect free type variables for generalization, and includes additional checks for skolem escape.

We implemented level-based type inference in a Koka compiler. Following the formalism, we

associate each unification and skolem variable with a level, and keep track of the current level

throughout type inference. The typing levels are incremented upon entering a new polymorphism

scope and decremented before generalization. This eliminates the need for context traversal during

generalization. Similarly, skolemization happens at the incremented level when a lambda is checked

against a propagated polymorphic type or when a type is checked to subsume another polymorphic

type. The promotion process rejects the program if a skolem attempts to leak to a lower level.

We note that Koka has a polymorphic type-and-effect systemwith algebraic effect handlers [Plotkin

and Power 2001; Plotkin and Pretnar 2009] and mutable reference cells. Our level-based generaliza-

tion naturally supports effect polymorphism. In particular, generalization happens when typing

named functions and top-level bindings that are total (akin to the value restriction [Wright 1995]).

Additionally, Koka supports impredicativity [Leijen 2008], where type variables can be instan-

tiated with polymorphic types. As a result, the promotion implementation for Koka can pro-

duce a polymorphic type and does not require the polarity as shown by the rule on the right.

Γ, 𝑎0 ⊢ 𝜎 ⇝𝑛 𝜎 ′

Γ ⊢ ∀𝑎. 𝜎 ⇝𝑛 ∀𝑎. 𝜎 ′

For example, promoting ∀a. a → a produces the type itself. In Koka,

this is implemented by treating a as a bound variable without a level,

rather than a skolem variable.

Validation. To validate the implementation, we have run the modified compiler on the entire

Koka test suite which includes 308 positive and negative tests. Our implementation produced results

identical to the original compiler for 275 tests.

For the remaining tests, the modified compiler produced equivalent results after alpha-renaming

of bound variables for 19 tests, where alpha-equivalence is needed because the constraint solver

in the modified compiler generates different numbers of variable identifiers, which then appear

in the generated core programs. Both compilers correctly rejected 7 negative tests (involving

issues like skolem escapes). The modified implementation produced different error messages,

as promotion detected skolem escapes earlier than the traditional context traversal approach.

The remaining 7 tests involve an analysis to remove tail effect variables. The analysis is known

to be fragile [Ikemori et al. 2022, §4.5], where the typability of a program is sensitive to small

program transformations (specifically, lifting a term to a let binding influences typability). We leave

developing a more robust analysis to future work.

Evaluation of generalization. It is clear that level-based generalization is computationally more

efficient, as it does not involve traversing the entire typing context. Rémy [1992] introduced level-

based generalization as “a simple and efficient presentation of ML type system”. Nevertheless, Rémy

[1992], and subsequent work such as Kuan and MacQueen [2007], did not provide an evaluation.
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We evaluated our level-based implementation in the Koka compiler against the original one,

focusing on performance gains of level-based generalization in a relatively modern type-checker. To

this end, we generated programs that stress the generalization process. Specifically, these generated

programs have 200 simple functions nested within a top-level function with varying numbers of

parameters. This structure models scenarios where a function relies on numerous local functions.

Each nested function simply takes three parameters and returns one parameter from the top-level

function. As a result, a program runs generalization 200 times, in a typing context whose size is the

sum of the number of parameters in the top-level function and the number of functions already

type-checked. The evaluation was performed on a MacBook Pro 2023 with 8-Core 64-bit Apple M3

CPU and 24GB unified memory.
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Fig. 11. Evaluation

We present the evaluation results in Fig. 11, comparing Level

Koka, the level-based implementation, with Koka the original com-

piler, where let generalization and skolem escape detection traverse

the typing context for free type variables. We disabled tail effect re-

moval for both compilers, ensuring identical typing results, so that

the performance difference is due to the generalization strategies

and the promotion overhead. We report the average type-checking

time in milliseconds (ms) over 10 runs for each program. The re-

sults show that generalization in Level Koka is 2.9-3.7x faster than

Koka on the programs. Moreover, Koka gets slower as the number

of parameters in the top-level function grows, leading to a larger

typing context.

It is important to note that these benchmark programs are specifically designed to stress the

generalization process, and the observed performance is specific to the data structures used within

the Koka type checker. In practice, the typing context may not reach the size of 2000, and the overall

running time of a compiler is impacted by various other phases beyond type checking. We interpret

the evaluation results as preliminary empirical evidence supporting the folklore that level-based

generalization is more efficient. In the future we are interested in studying the performance impact

on larger-scale Koka applications.

8 Language Extensions
We explore related language extensions and discuss how modern type checkers, specifically the

Glasgow Haskell Compiler (GHC) and the OCaml type checker, use levels in their implementations.

Kind polymorphism. While type variables in this paper all have the same kind (i.e. the kind ★),

modern type checkers often employ higher kinds or kind polymorphism [Yorgey et al. 2012]. With

kind polymorphism, the kind of a type variable can include a kind variable. Extending levels to

support kind variables is relatively straightforward: each kind variable is associated with a level,

and promoting a type variable also promotes its kind. Xie et al. [2019] provide a detailed formalism

of kind inference in the setting of ordered contexts [Dunfield and Krishnaswami 2013].

GADTs. Similar to the formalism presented in this paper, GHC associates each type variable with

a level and uses levels for generalization and skolem escape check. Additionally, GHC uses levels

when type-checking programs with generalized algebraic datatypes (GADTs).
Specifically, consider the example on the right taken from Vytiniotis et al. [2011]. We can type

data T ::★→ ★ where
T1 :: Int → T Bool
T2 :: T a

test (T1 n) = n > 0

test T2 r = r

test with either of the following two types that are not a subtype

of each other: (1) ∀a. T a → Bool → Bool; (2) ∀a. T a → a → a.
This example demonstrates the known issue that type inference for

GADTs does not always have principal types [Cheney and Hinze 2003;
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Vytiniotis et al. 2011]. GHC rejects test using the concept of untouch-
able variables. Specifically, if the return type of test is a unification
variable 𝛼 , this variable is considered untouchable (i.e. cannot be solved) under the local assumption

a ∼ Bool, as unifying 𝛼 with Bool has two incompatible solutions: 𝛼 = a, or 𝛼 = Bool.
GHC implements untouchability using levels. Specifically, GHC’s type inference is based on

constraint generation and solving. In the above example, the GADTmatch introduces an implication
constraint a ∼ Bool ⇒ 𝛼 ∼ Bool. Importantly, GHC increments the level when checking a GADT

match, and associates the implication constraint with the incremented level (say 2). Since 𝛼 has a

lower level (say 1) and is under a local assumption, it is considered untouchable, as unifying 𝛼 may

not produce principal types. This mechanism prevents solving 𝛼 with Bool.
We remark that using levels for untouchable variables shares similarities with skolem escape

checks. In both cases, levels indicate the valid scope of a unification variable: it prevents unification

with a skolem variable of a higher level, or within an implication constraint that has a higher level.

Type families. GHC also supports type families [Eisenberg et al. 2014; Stolarek et al. 2015]. Recall

that when unifying 𝛼1
with Maybe ˆ𝛽2, we promote

ˆ𝛽2 to level 1. Interestingly, given a type family

F , unifying 𝛼1
with F ˆ𝛽2 should not promote

ˆ𝛽 , as F ˆ𝛽2 can potentially reduce to, say, Int , which is

well-formed at level 1. As a result, GHC does not promote variables under a type-family application.

The OCaml type checker. Levels are also used in the OCaml type checker, as detailed in a blog

post by Kiselyov [2022]. While promotion in our system and GHC involves creating new unification

variables, levels in OCaml use mutable references and can thus be updated in-place.

let y =

let module M =

struct
type t = Foo
let x = Foo

end
in M.x

OCaml prevents local definitions from leaking. For example, the program

with local modules on the right does not type-check. OCaml achieves that

by incrementing the typing level when type-checking a local module, and

later checking that the level of the result type has the original level.

Interestingly, in OCaml, every type is associated with a level, maintained

during unification. The design enables efficient level access through a

constant-time lookup. OCaml thus employ several techniques to optimizing

level-related operations. For example, during generalizing, if a type’s level

is not greater than the current typing level, the type checker doesn’t need to traverse that type’s

structure. OCaml also adjusts levels to relax the value restriction [Garrigue 2004], by lowering the

level of type variables appearing in contravariant positions, preventing their generalization.

OCaml also supports GADTs using the concept of ambivalent types [Garrigue and Rémy 2013].

More concretely, types in OCaml carry an additional scope. Ensuring that an ambivalent type does

not escape its scope is equivalent to checking if its scope is no greater than its level.

Another interesting use of levels is that OCaml associates bound variables with a very large

level (10
8
). Thus, instantiating can skip types without such a level as they have no bound variables.

9 Related Work and Conclusion
We have discussed most related work on levels throughout the paper [Kiselyov 2022; Kuan and

MacQueen 2007; Rémy 1992]. Ordered contexts [Dunfield and Krishnaswami 2013; Gundry et al.

2010] is an approach adopted in several subsequent works [Dunfield and Krishnaswami 2019; Xie

et al. 2019; Zhao et al. 2019]. While ordered contexts offer an elegant framework for reasoning

about type inference, they focus more on theoretical foundations than practical implementations.

This work seems to be the first comprehensive formalism of level-based type inference beyond

let generalization. While we explored a range of language features implemented using levels, our

investigation is not exhaustive. We are interested in extending the formalism with more features,
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such as GADTs. Furthermore, mechanization of type inference algorithms requires significant

effort [Garrigue 2015; Zhao et al. 2018, 2019]. We would like to mechanize the proofs for our

algorithmic system in the future.
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