
Liberating Merges via Apartness and Guarded Subtyping

HAN XU, Princeton University, United States

XUEJING HUANG, The University of Hong Kong, China and IRIF, Université Paris Cité, France

BRUNO C. D. S. OLIVEIRA, The University of Hong Kong, China

Themerge operator is a powerful construct in programming languages, enabling flexible composition of various

components such as functions, records, or classes. Unfortunately, its application often leads to ambiguity and

non-determinism, especially when dealing with overlapping types. To prevent ambiguity, approaches such as

disjoint intersection types have been proposed. However, disjointness imposes strict constraints to ensure

determinism, at the cost of limiting expressiveness, particularly for function overloading. This paper introduces

a novel concept called type apartness, which relaxes the strict disjointness constraints, while maintaining

type safety and determinism. Type apartness allows some overlap for overloaded functions as long as the

calling contexts of those functions can be used to disambiguate upcasts in function calls. By incorporating

the notion of guarded subtyping to prevent ambiguity when upcasting, our approach is the first to support

function overloading, return type overloading, extensible records, and nested composition in a single calculus

while preserving determinism. We formalize our calculi and proofs using Coq and prove their type soundness

and determinism. Additionally, we demonstrate how type normalization and type difference provide more

convenience and help resolve conflicts, enhancing the flexibility and expressiveness of the merge operator.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: functional languages, object oriented languages, type systems

ACM Reference Format:
Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira. 2025. Liberating Merges via Apartness and Guarded

Subtyping. Proc. ACM Program. Lang. 9, OOPSLA2, Article 279 (October 2025), 28 pages. https://doi.org/10.
1145/3763057

1 Introduction
The merge operator [Reynolds 1997] is a powerful construct that enables flexible composition of

functions, records, and classes. Dunfield [2014] argued that the merge operator is valuable for

language design because it allows encoding various language features within a general-purpose

calculus, rather than crafting specialized calculi for each feature. The merge operator composes any

two values, with extraction determined by their types. For instance, the merge 1 , , True combines

an integer and a boolean, giving it the intersection type Int&Bool. Many applications of the merge

operator exist, including function overloading [Castagna et al. 1995], return type overloading [Xue

et al. 2022], record concatenation [Reynolds 1988], nested composition and dynamic inheritance [Bi
and Oliveira 2018], and composition of runtime environments [Tan and Oliveira 2023].

Due to its power, the merge operator is hard to control. In particular, merging values with

overlapping types can introduce ambiguity. For example, in the merge 1 , , 2, extracting an integer is

ambiguous since either 1 or 2 could be chosen. Disjoint intersection types [Oliveira et al. 2016] were
introduced to address this issue by restricting the types of values that can be merged based on their

Authors’ Contact Information: Han Xu, hx3501@princeton.edu, Princeton University, Princeton, United States; Xuejing

Huang, Xuejing.Huang@irif.fr, The University of Hong Kong, China and IRIF, Université Paris Cité, France; Bruno C. d. S.

Oliveira, The University of Hong Kong, China, bruno@cs.hku.hk.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART279

https://doi.org/10.1145/3763057

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

https://orcid.org/0000-0002-2548-6866
https://orcid.org/0000-0002-8496-491X
https://orcid.org/0000-0002-1846-7210
https://doi.org/10.1145/3763057
https://doi.org/10.1145/3763057
https://orcid.org/0000-0002-2548-6866
https://orcid.org/0000-0002-8496-491X
https://orcid.org/0000-0002-8496-491X
https://orcid.org/0000-0002-1846-7210
https://orcid.org/0000-0002-1846-7210
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763057

279:2 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

shared supertypes, ensuring a deterministic and well-behaved semantics [Huang et al. 2021]. The

disjoint merge operator paves the way for a compositional style of statically typed programming

where solutions to the expression problem [Wadler 1998] emerge naturally. A prototype programming

language, called CP, illustrating this compositional programming style, has been implemented

based on a core calculus with the merge operator [Zhang et al. 2021].

While disjoint intersection types prevent ambiguity, they are often too restrictive. The main issue

is that disjointness requires all possible future upcasts to be unambiguous, limiting expressiveness,

particularly for function overloading. For example, consider two functions 𝑓 and 𝑔 of types Int →
String and Bool → String. Since they share a common supertype (Int&Bool) → String, their
merge f , , g is rejected under disjointness, as applying it to a value of type Int&Bool would be

ambiguous. However, such strictness unnecessarily prevents valid cases, where a function call can

be safely disambiguated by the calling context.

To overcome these limitations, we introduce type apartness, a relaxed alternative to disjointness.

Apartness allows overlapping types as long as the overlapping parts remain distinguishable at

the point of use. This is enough to prevent ambiguity while increasing flexibility. For example,

under apartness, the merge f , , g is accepted, and it can be applied unambiguously to an integer

or a boolean. However, applying it to a merged argument, such as 1 , , True, yields an ambiguous

merge of 2 strings. Guarded subtyping complements apartness to detect ambiguity, by ensuring

that all upcasts are safe. If a function application could produce an ambiguous result, guarded

subtyping rejects the application. For example, guarded subtyping would reject (f , , g) (1 , , True)
while allowing (f , , g) 1.

Apartness also improves type difference [Xu et al. 2023], a conflict resolution method based on

type subtraction. Under apartness, type difference becomes a total operation, in contrast to its

partial nature under disjointness. This new formulation of type difference ensures that conflicts

between types can always be resolved, enhancing the flexibility and expressiveness of the merge

operator. Additionally, we introduce the concept of type normalization, which systematically handles

unrestricted intersection types by transforming them into a canonical form where all intersections

are apart. This process eliminates redundant and conflicting type components, ensuring that the

resulting types are well-formed and unambiguous. Consequently, this provides greater flexibility

and convenience for programmers, allowing them to write programs with unrestricted intersection

types, which is particularly useful in scenarios involving multiple inheritance.

By combining type apartness with guarded subtyping and the new formulation of type difference,

our approach provides the first calculus that supports function overloading [Castagna et al. 1995],

return type overloading [Xue et al. 2022], extensible records [Reynolds 1988], and nested composi-
tion [Bi and Oliveira 2018], while preserving determinism. Unlike prior work [Xue et al. 2022],

which supports these features but is non-deterministic, our approach ensures a fully deterministic

calculus, making it more practical and robust. Our main contributions are:

• Type apartness, which enables function overloading, return type overloading, extensible records,
and nested composition while maintaining determinism.

• A formalization of source and target calculi, proving their soundness and correspondence.

• A Coq formalization, verifying our results.
• A new formulation of total type difference, improving upon previous work [Xu et al. 2023].

2 Overview
We aim to develop an expressive and deterministic calculus that supports four key features: function
overloading, return type overloading, extensible records, and nested composition. This section provides

background information and demonstrates how apartness and guarded subtyping enable a solution

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:3

class Deck { public:

virtual void draw() { std::cout << "Draw a card." << std::endl; }

};

class Drawable { public:

virtual void draw() { std::cout << "Create a blank canvas." << std::endl; }

};

class DrawableDeck : public Drawable, public Deck {}; // This class is accepted!

int main() {

DrawableDeck dd;

static_cast<Deck&>(dd).draw(); // Output: Draw a card.

dd.draw(); //error: request for member 'draw' is ambiguous

return 0;

}
Fig. 1. C++’s relaxed approach to conflict resolution.

that supports all these features while ensuring determinism. We also highlight the role of type

well-formedness and type normalization in constructing sound calculi with apart merges.

2.1 C++ Method Resolution: a Source of Inspiration
Name, method, and class conflicts frequently arise in programming languages. Various approaches

exist to resolve such conflicts, including forbidding redefinitions or overriding previous definitions.

For instance, in many object-oriented languages, defining two methods with the same name

(and signature) in the same class is (rightfully) prohibited. A related situation arises in multiple

inheritance, when two parent classes define a method with the same name. A common approach is

to reject such programs entirely, which avoids ambiguity but can be overly restrictive. Conservative

strategies for conflict resolution limit the expressiveness of a language by disallowing many useful

programs. To mitigate this, some languages take a more flexible approach by delaying conflict

resolution until a method or value is used.

The relaxed conflict resolution approach of C++. A well-known example of delayed conflict resolu-

tion is found in C++’s multiple inheritance model. To illustrate, we adapt an example from Wang

et al. [2018]. In Fig. 1, we develop two components Deck and Drawable in one system. Deck imple-

ments a deck of cards and defines a method draw for drawing a card from the deck. Drawable is an

interface for graphics and also implements a method called draw for visual display. We happen to

encounter a name conflict when we implement the derived class DrawableDeck. Here C++ adopts a

delayed approach to conflict resolution. Instead of rejecting DrawableDeck at the point of definition,
it defers ambiguity detection to the method’s use site. If a method call is unambiguous, it proceeds as

usual. However, calling dd.draw() is ambiguous because both Deck::draw and Drawable::draw
are valid candidates, causing the compiler to reject the call. Nonetheless, ambiguity can be resolved

by explicitly upcasting dd to a parent class, as shown in static_cast<Deck&>(dd).draw(). Such
a conflict resolution strategy not only accepts a broader range of safe programs, but also allows

users to use classes and methods polymorphically. Inspired by this approach, we adapt similar ideas

to calculi based on intersection types and the merge operator [Dunfield 2014; Oliveira et al. 2016].

2.2 Background
The merge operator, coercive subtyping and intersection types. The merge operator [Dunfield 2014;

Reynolds 1988] generalizes record concatenation to concatenation of arbitrary terms. It composes

terms and allows implicit elimination based on types. For example, the followingmerge 1, ,True, ,not
(not is a function representing the negation on booleans) is well-typed. The type of this merge is

the intersection type Int&Bool& (Bool → Bool).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:4 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Table 1. Four applications of the merge operator with examples.

Features Examples Previous Works

Function overloading showInt , , showBool
Castagna et al. [1995]; Dunfield [2014]; Xue

et al. [2022]

Return type overloading readInt , , readBool Marntirosian et al. [2020]; Xue et al. [2022]

Nested composition ({l = "hello"} , , {l = 1}) .l Reynolds [1988]; Xue et al. [2022]; Zhang

et al. [2021]

Extensible records {l1 = "hello"} , , {l2 = "world"} Bi et al. [2018]; Huang et al. [2021]; Xue

et al. [2022]

Calculi with amerge operator use a coercive interpretation [Luo 1999; Reynolds 1991] of subtyping,
instead of the traditional subsumptive interpretation of subtyping. In the coercive view, each

subtyping judgment denotes an implicit conversion function. When a value is used in a context that

expects a supertype, it is coerced by the corresponding function. Typically (and in our setting) the

conversion function is injective, which means that information can be lost when converting a value

to another value of a supertype. For example, in our setting the maximal type ⊤ (Top) has only

one canonical value; every type is a subtype of ⊤, and every expression is converted into the top

value when ⊤ is required. This is unlike subsumptive subtyping, which reflects the intuition that

types correspond to sets of values, and the values of a subtype and its supertype are in a subset

relation. This implies that subsumptive subtyping does not have runtime effects, and leads to the

safe substitution principle [Liskov and Wing 1994]. Reynolds referred to the two interpretations as

intrinsic semantics and extrinsic semantics of subtyping [Reynolds 1998]. Coercive subtyping is

considered to match the intrinsic view of types because the meaning of an expression depends on

how it is typed. With subsumptive subtyping, a value can be assigned multiple types.

Coherence is a key property in coercive subtyping: while multiple derivations exist for one

subtyping conclusion, they are supposed to produce equivalent coercions. This is important for the

language semantics to be independent from how a type derivation for an expression is constructed.

Proving coherence is tricky, and intersection types make it harder. Consider types A and B that

share a supertype C: for any subtype of A&B, there are at least two paths that lead to C, one
through A and the other through B, which may lead to possible ambiguity. Intersection types are

also studied under the subsumptive interpretation with a set-theoretic model [Frisch et al. 2008]. In

this model, there is no term of the type Int&Bool because Int and Bool do not share any values. But
with the merge operator, we can construct terms such as 1 , , True explicitly. Coercions arising from
upcasts may have a runtime effect. In addition, any coercion to the ⊤ type is safe as ⊤ represents

a singleton value. For example, the merge operator with disjoint intersection types [Huang et al.

2021; Oliveira et al. 2016] adopts the following semantics:

(1 , , True) : Int ↩→ 1 (1 , , True) : ⊤ ↩→ ⊤ (𝜆Int→Intx . x) (1 , , True) ↩→ 1

Upcasts have a runtime effect as they drop components from the merge. To be clear in the following

discussions, we say that two coercions are equivalent when they reach the same value in the end,

even if the sequence of evaluation steps dropping components may be different. We say that there

is a unique coercion from one type to another when all possible coercions are equivalent.

Applications of merges. The merge operator has several applications. We summarize four applica-

tions, identified by Xue et al. [2022], in Table 1. The last entry of the table identifies works in the

literature that build on such applications. We briefly explain these applications next.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:5

• Function overloading. Function overloading is one kind of polymorphism, which allows choosing

functions or methods according to the type or argument being applied to. For example, function

overloading can choose showInt or showBool according to the argument that is applied.

(showInt , , showBool) 1 ↩→ "1"

(showInt, , showBool) True ↩→ "True"

• Return type overloading. Return type overloading is a feature that enables choosing an implemen-

tation from a merge depending on the context involved. A classic example is the read function in

Haskell. Like show, we can define a version of read with the merge operator as

read : (String → Int) & (String → Bool) = readInt , , readBool

It is possible to disambiguate calls to read from the use context. For example, (read "1") + 1

should select readInt, since an integer is expected from the use of read.

• Nested composition. Nested composition reflects the distributivity behaviour of intersection types

at the term level. Merges with nested composition were first proposed by Bi et al. [2018], allowing

distributive extraction of nested terms such as

({𝑙 = "hello"}, , {𝑙 = 1}).𝑙 ↩→ "hello", , 1

Nested composition serves as a key feature in Compositional Programming [Zhang et al. 2021].

Techniques based on nested composition help solving modularity problem such as the Expression
Problem [Wadler 1998] and also enable forms of family polymorphism [Ernst 2001].

• Extensible records. Extensible records were among the first applications of merges [Reynolds 1988].

The key observation is that multi-field records can be simply encoded as merges of single-field

records, such as:

{l1 = "hello", l2 = "world"} ≜ {l1 = "hello"} , , {l2 = "world"}
The merge of single-field records should have the same behaviour as a multi-field record. That

is to say, the merge should project the associated content of the single field that is designated.

({l1 = "hello"} , , {l2 = "world"}) .l1 ↩→ "hello"

Problem: Ambiguity of merges. Though the merge operator is powerful and expressive, without

restrictions it easily leads to ambiguity. In Dunfield [2014]’s calculus, we can merge two arbitrary

terms e1 and e2 together. Then a non-deterministic semantics of merge operator e1 , , e2 is adopted
where e1 , , e2 can be evaluated to either e1 and e2. Thus, for example, we can have the following

non-deterministic evaluation for the same expression:

1 + (1 , , 2) ↩→ 2 1 + (1 , , 2) ↩→ 3

Note that both (1 , , 2) ↩→ 1 and (1 , , 2) ↩→ 2 are type-safe here. However, such cases mean that

reduction is ambiguous, as multiple results are possible.

Disjoint intersection types. To address the problem of ambiguous merges Oliveira et al. [2016]

proposed disjoint intersection types. The idea is that only merges of expressions with disjoint types

are allowed. The design philosophy of disjoint intersection types is that a merge should be able

to be used in any context that expects a supertype of its type. A typical example of a context is

being wrapped with a type annotation. Consider f and g as two functions. For (f , , g) : ⊤ → Bool
to exhibit unambiguous behavior, it needs to select either f or g. If their types are disjoint, they
cannot share a common supertype like ⊤ → Bool, meaning that only one of them can be used to

determine the behavior. Therefore casting a merge to any supertype is acceptable. This idea leads to

the definition of disjointness in the line of work on disjoint intersection types [Oliveira et al. 2016]:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:6 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Definition 2.1 (Disjointness Specification). A ∗𝑑 B ≜ ∀ C, if A ≤ C ∧ B ≤ C, then ⊤ ≤ C .

If the only common supertype between two types is the top type (and types that are equivalent to

top), then the only value that can have both types is the canonical top value (i.e. in the coercive

interpretation the top type is interpreted as a unit type). Other values can either have type 𝐴

or 𝐵 but not both types at once. With disjointness, we can unambiguously extract each (non-⊤)
component under different type contexts.

(1 , , True , , not) : Int ↩→ 1 (1 , , True , , not) : Bool ↩→ True

(1 , , True , , not) : Bool → Bool ↩→ not
Next we show a few more examples to illustrate disjointness on different types.

𝐴 = Int 𝐵 = Bool Disjoint (no common non-top supertype)

𝐴 = Int& String 𝐵 = Bool& String Common supertype: String

𝐴 = Int → String 𝐵 = Bool → String Common supertype: Int&Bool → String
Only in the first example the types Int and Bool are disjoint with each other, as their only common

supertype is ⊤. But the subsequent two examples are not as we can find a common supertype for

them. To guarantee that upcasting is always valid and type-safe, semantically different components

in merges cannot share any supertype, except for types that are equivalent to ⊤.

Definition 2.2 (Type Equivalence). A =𝑠 B ≜ A ≤ B ∧ B ≤ A.

Limitations of disjointness. While disjointness is a valuable approach, it comes with limitations.

For instance, disjointness prevents conventional function overloading, such as:

show = (showInt : Int → String) , , (showBool : Bool → String)
Here, this merge is not disjoint because the return type is the same. Thus, we can find a common

supertype, such as Int&Bool → String, which would make extracting one of the functions ambigu-

ous (both functions could be extracted). A limitation of disjointness is that it tries to ensure that all
future casts on the merge are unambiguous. While this is a nice property to have, in some cases,

like the above, it is too limiting. For example, we can use the merge above without ambiguity as:

show 1 ↩→ "1" show True ↩→ "True"
The argument 1 and True can uniquely determine the function we want to apply is showInt or
showBool. Ambiguity should be triggered in cases such as:

show (1 , , True) ↩→ "1" show (1 , , True) ↩→ "True" show (1 , , True) ↩→ "1" , , "True"
Here 1 , , True can be an argument to both showInt and showBool. Disjointness rejects many forms

of overloaded functions because of this issue, and calculi with disjoint intersection types cannot

fully support overloading. More generally, there is currently no deterministic calculus with merges

that supports all four features in Table 1.

2.3 Apartness: Relaxing Disjointness
To admit a wider range of useful programs, and support all four features in Table 1, we introduce

apartness. Apartness replaces disjointness and delays the ambiguity check in some cases. Fig. 2

graphically contrasts apartness and disjointness. Disjointness accepts no ambiguity at all, while

apartness allows some levels of ambiguity like showInt , , showBool, even if there is a common

supertype Int&Bool → String. Though apartness is more relaxed, it does not allow ambiguity

where one type completely shadows (i.e., it is a subtype of) the other. The term shadowing denotes

that a value of subtype A can always be used in place of a value of supertype B under the coercive

subtyping view described in Section 2.2. When type A shadows B it is impossible to have a context

that extracts the term of type B without matching the term of type A.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:7

Int Bool ⊤ → Bool Int→Bool Int→String
Int&Bool

→
String

Bool→String

Fig. 2. Cases: A disjoint with B, A (completely) shadows B, and A apart (or partly overlaps) with B.

For instance, the merge 1 , , 2 , , True is ambiguous when it is used as a value of type Int and there
is no supertype that can be used to remove ambiguity for extracting an integer. Thus, in this case,

apartness (as well as disjointness) rejects the merge.

Guarded subtyping. By shifting from disjointness to apartness, we gain the ability to support

function overloading. In such cases, the ambiguous casts can still be rejected later by our type system,

through the guarded subtyping relation. From a coercive point of view, the subtyping relation denotes

the existence of a coercion, while guarded subtyping denotes the existence of a unique coercion.
Thus, both (showInt , , showBool) : Int&Bool → String and (showInt , , showBool) (1 , , True)
are ill-typed. Apartness accepts merges if there are casts that allow us to extract every piece of
information in the merge. For the show example, we can find casts that can extract both functions:

show : Int → String (extracts showInt)
show : Bool → String (extracts showBool)

So the show merge should be accepted. However, if we have:

badShow1 = (showInt1 : Int → String) , , (showInt2 : Int → String)
badShow2 = (showInt1 : Int → String) , , (showInt2 : (Int& String) → String)

we should reject those merges. In the first case we cannot extract showInt1 or showInt2 without
ambiguity. In the second case, we can extract showInt1without ambiguity using badShow2 : Int →
String. However, we cannot extract showInt2without ambiguity, since badShow2 : (Int& String) →
String is ambiguous and can match both showInt1 and showInt2. Apartness only guarantees that

we can choose components from a merge depending on the context. In contrast, disjointness

guarantees that we can choose a component regardless of the context. Nevertheless, apartness

(with guarded subtyping) is still able to achieve determinism, as we shall see later in Section 2.4.

Encoding records via overloading. An advantage of apartness is support for a more lightweight

encoding of records via first-class labels [Leijen 2004] and function overloading. This encoding of

records was first proposed by Castagna et al. [1995]. In this encoding a record type {𝑙 : 𝐴} is viewed
as a function type Sig l → A from a singleton type to the value. Such feature is helpful to simplify

a calculus with the merge operator. The notable point is that such simplification is not possible

with disjoint intersection types because merging Sig l1 → Int with Sig l2 → Int will be illegal since
the functions have the same return type, like in the show example. Thus calculi with disjointness

have to use the primitive record encoding as {𝑙1 : Int} and {𝑙2 : Int} to model multi-field records.

With the weaker notion of apartness, we can simplify the record encoding inside the whole system,

and model records as functions where the input type is the label to be projected.

2.4 Technical Overview
In this section, we will give a more technical overview towards the key design and mechanisms for

apartness, guarded subtyping as well as the features in source and target calculi.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:8 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Apartness specification. For apartness, the specification becomes harder, compared to disjointness.

We need to specify that if type A is apart with type B, then every type component inside A and B
should not shadow or be a subtype of the other. We define a (minimal) type component through

the notion of a minimal ordinary type MinOrd B A, which states that type B is a type component

(i.e., supertype and being non-intersection) of A. Here minimal is in terms of subtyping relations.

We provide an intuition of MinOrd B A with some simple examples first:

A = B = MinOrd B A

Bool ⊤ ✗ as ⊤ is not a minimal component (Bool component subsumes it)

Bool& String String D
Bool& String Bool& String ✗ as B is an intersection type

For type Bool, the only type component is Bool itself, while for type Bool& String, a type com-

ponent can be either Bool or String. Note that an intersection type can never be a minimal type

component. Next we show some more complex examples, where A and B themselves contain

overlapping or shadowing.

A = B = MinOrd B A

(Int → String) & (Bool → String) Int → String D
(Int → String) & (Bool → String) (Int&Bool) → String ✗

(Int → String) & ((Int&Bool) → String) Int → String D
For (Int → String) & (Bool → String), the type component can be either Int → String or

Bool → String. But the supertype Int&Bool → String cannot be a type component as it completely

shadows (is the supertype) of Int → String. The type (Int → String) & ((Int&Bool) → String), is
equivalent to the type Int → String in terms of the subtyping relation. Thus the type component

can only be Int → String. We can now give a formal definition of MinOrd:

Definition 2.3 (Minord). MinOrd B A ≜ B◦ ∧ A ≤ B ∧ (∀ C, if C◦ ∧ A ≤ C ∧ C ≤ B, then B ≤ C).
Here B◦ denotes an ordinary type (i.e. B cannot be an intersection type), and A ≤ B restricts B to

be a supertype of A. The condition stating that ifA ≤ C ∧ C◦ ∧ C ≤ B, then B ≤ C, suggests that B
is a minimal type component of A as any other type that satisfies the same requirement should be

equivalent to type B. With MinOrd we can give the specification of apartness:

Definition 2.4 (Apartness Specification). A ∗𝑠 B ≜ ∀C1 C2, if MinOrd C1 A ∧MinOrd C2 B, then
either C1 = ⊤ or C2 = ⊤ or (¬(C1 ≤ C2) ∧ ¬(C2 ≤ C1)).
Such specification checks that all the type components C1 in A and C2 in B do not contain any

shadowing (¬(C1 ≤ C2) ∧ ¬(C2 ≤ C1)), unless one of them is ⊤.

Guarded subtyping and lack of transitivity. Since apartness is guaranteed through merges, and it

delays the check of ambiguity in some cases, we need another relation that performs a final safety

check to ensure no ambiguity. This check is done via the guarded subtyping relation A ≾ B. The
guarded subtyping relation A ≾ B is a restricted version of subtyping that ensures that a coercion

from type A to type B is unique.
Unlike the usual subtyping relation, the guarded subtyping relation A ≾ B is not transitive. This

means that even if A ≾ B and B ≾ C, it does not necessarily follow that A ≾ C. For example:

(Int → String) & (Bool → String) ≾ (Int → String) (Int → String) ≾ (Int&Bool → String)
¬((Int → String) & (Bool → String) ≾ Int&Bool → String)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:9

(Int → String) & (Bool → String) is a guarded subtype of Int → String, and Int → String is a

guarded subtype of Int&Bool → String. However, (Int → String) & (Bool → String) is not a
guarded subtype of Int&Bool → String because both components in the intersection are subtypes

of Int&Bool → String. This demonstrates that directly replacing a type annotation with its guarded

supertype can lead to ill-typed programs.

Consequently, more type information needs to be preserved at runtime to ensure type correctness.

We address this by allowing type annotations to be accumulated within function-like values.

By keeping track of intermediate types, we ensure that a unique path exists for future well-

typed function application. To make this concrete, suppose we have a function annotated as

𝜆A→A′
x . e : (B → B′) : (C → C′), even though the function itself is uniquely determined (there

is no ambiguity that 𝜆A→A′
x . e implements C → C′

and we do not need to choose from merges

of functions), we cannot drop B → B′ because B maintains the path for converting the function

argument from C to A, and B′ is essential for converting the function application result as well.

Transitivity, determinism, and flexibility. In sufficiently rich type systems with merges, achieving

transitivity, determinism, and flexibility simultaneously often proves impossible. Prior work illus-

trates this tension through different design trade-offs: Dunfield [2014]; Xue et al. [2022]’s calculi

preserve flexibility and transitivity but sacrifice determinism; calculi based on disjoint intersection

types [Oliveira et al. 2016] maintain transitivity and determinism by sacrificing flexibility. Our

work takes a different approach by sacrificing transitivity to preserve determinism and flexibility.

There is an analogous issue in gradual type systems, in calculi like the blame calculus [Wadler and

Findler 2009]. Gradual typing systems use a consistency relation (∼) that checks the compatibility

of types by relaxing equality, accepting an unknown type (★) in type components. However, this

relation is inherently non-transitive. For example:

𝐼𝑛𝑡 ∼ ★ is true, ★ ∼ 𝐵𝑜𝑜𝑙 is true, but 𝐼𝑛𝑡 ∼ 𝐵𝑜𝑜𝑙 is false.

Gradual typing systems also employ a consistent subtyping relation (≲) that combines subtyping

with type consistency. While ≲ supports flexibility by allowing some loss of information, it too is

non-transitive. For instance:

𝐼𝑛𝑡 ≲ ★ is true, ★ ≲ 𝐵𝑜𝑜𝑙 is true, but 𝐼𝑛𝑡 ≲ 𝐵𝑜𝑜𝑙 is false.

This trade-off between flexibility and transitivity is discussed by Siek and Taha [2007]. By dropping

transitivity, we align with these established principles, ensuring determinism and flexibility without

sacrificing type safety.

Type well-formedness. To achieve a calculus with the desirable properties of determinism and

flexibility, we impose well-formedness constraints on types. These constraints ensure that types

are constructed in a manner that avoids ambiguities, since all types in intersections must be apart.

Well-formedness disallows unrestricted intersections such as Int& Int because they can lead to

non-deterministic behavior when merged values are projected in different contexts. Moreover the

use of guarded subtyping, instead of subtyping, prevents any remaining ambiguity arising from

types that are apart, but overlapping. The calculus presented in Sec. 4 adopts this design with type

well-formedness and is proven to be both type safe and deterministic.

Type normalization and unrestricted intersections. While well-formedness constraints are a simple

way to ensure determinism, there are compelling reasons to allow unrestricted intersection types in a

languagewithmerges. Unrestricted intersection types provide greater convenience for programmers

by enabling more expressive and flexible type constructions. For instance, in a language with

unrestricted intersections we can write 1 : Int& Int, but there is still an apartness check on merges,

so the terms (1 , , 2) : Int& Int or (1 , , 1) : Int& Int would be forbidden. Unrestricted intersection

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:10 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

A:

{x: Int}

B:

{x: Int, y: Bool}

C:

{x: Int, z: Char}

D:

{x: Int, y: Bool, z: Char}

Fig. 3. Interface inheritance hierarchy with unrestricted intersections.

types are useful, but we need to be careful to make them safe during coercions. For example,

1 : Int& Int can be safely uniquely coerced into the term 1 , , 1, but 1 , , 1 is not well-formed as it

represents multiple choice of 1 on both sides of the merge. Instead of forbidding such terms in the

first calculus 𝜆∗, in second calculus 𝜆 |∗| we normalize types into a well-formed canonical form, and

then coerce the terms with normalized types. This calculus 𝜆 |∗| , which is presented in Sec. 5, does

not have type well-formedness restrictions and allows unrestricted intersections.

The unrestricted type system allows types like Int& Int. Such non-apart types are especially

useful in modeling object-oriented programming style multiple (interface) inheritance. For example,

consider the following class hierarchy in Fig. 3. In this scenario, it would be useful to use B&C to

denote the type of class D. However, the intersection B&C is not apart, so it is not possible to use

B&C to denote the type D in the calculus with type well-formedness. It could be cumbersome to

manually write the type D directly or using type difference/annotations to resolve the conflict [Xu

et al. 2023]. Instead, the calculus with normalization allows programmers to more naturally and

intuitively express the combination of multiple inherited types directly as type B&C.
To enable unrestricted intersections, we need to normalize types into a well-formed canonical

form. For instance, a type like Int& (Bool& Int) can be normalized to Int&Bool, which is a well-

formed type under the type system in Sec. 4. Similarly, we could normalize B&C to end up with the

type D. Before type checking and execution, we translate programs from the source calculus 𝜆 |∗| in
Sec. 5 to the target calculus 𝜆∗ in Sec. 4. The target calculus 𝜆∗ enforces stricter well-formedness

constraints and ensures that all types are normalized. Notably this translation process shows

that, while there is a restriction on types in the target calculus 𝜆∗, no expressive power is lost by

this restriction on type well-formedness. The unrestricted syntax of intersection types has been

given a constrained meaning by translation to well-formed intersection types, established by type

normalization and a value-to-value mapping between 𝜆 |∗| and 𝜆∗ in Sec. 5.

Type difference as type normalization. Type difference is an approach to conflict resolution

proposed by Xu et al. [2023] to eliminate conflicts between terms of type A and type B. This
mechanism for conflict resolution is based on coercive subtyping. In our calculus, type annotations

can be used to manually resolve conflicts arising from overlapping types. For example, consider

the variables x of type Int&Bool and y of type Int& String. Attempting to merge x and y (i.e.,

x , , y) results in a conflict because they share the type Int. To resolve this conflict, we can use type

annotations to explicitly exclude the conflicting type from either x or y:

(x : Bool) , , y or x , , (y : String)

While type annotations effectively resolve conflicts, they can become impractical with large or

complex types, requiring extensive manual annotations. For instance, with multiple inheritance,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:11

we may need to resolve conflicts in C1 and C2 when merging them:

e1 of type:

C1 = { l1:Int,

l2:Bool,

...

ln1:String→Int

};

e2 of type:

C2 = { l1:Bool,

l2:Bool,

...

ln2:Bool→Int,

}

Manually resolving such conflicts becomes laborious and sometimes extremely hard. To address

such problems, type difference was designed to automate the annotations needed, enabling us to

programmatically exclude conflicting parts without verbose annotations. Using type difference, we

can resolve conflicts succinctly:

e1, , (e2\C1)
(e1\C2) , , e2

or
e1, , (e2\e1)
(e1\e2) , , e2

where e\A suggests removing all the type A components from e, and e1\e2 suggests removing all

conflicting parts of e1 and e2 from e1.
Though Xu et al.’s type difference is expressive, it is not total. Type difference under disjointness

cannot resolve all the merge conflicts. For example, if we have type Int → String and Bool → String,
Xu et al.’s type difference cannot find a type C = (Int → String)\(Bool → String) such that C
is mergeable (disjoint) with Bool → String, while keeping all the other information in type

Int → String. In their work, Xu et al. proposed a specification for type difference, denoted as

A\𝑠B = 𝐶 , alongwith a partial algorithm that is sound and complete with respect to this specification.

In contrast, our work introduces a relaxation of disjointness using a one-sided apartness relation

A <∗B. This relation ensures that the type components of B are not shadowed by those of A,
but not necessarily vice versa (formally defined in Definition 6.1). Under this relaxed notion, we

obtain a total specification for type difference. Besides, we present type normalization as a different
algorithm that is both sound and complete with respect to the new specification. In this framework,

a type A is normalized to |A| through an auxiliary process that normalizes one type with respect to

another, denoted |A|B. Full normalization is a special case: |A|⊤, which resolves all conflicts in A
relative to the top type.

Type normalization |A|B is sound and complete with respect to the new type difference specifi-

cation: A\𝑠B = |A|B, and for all C, if A\𝑠B = C, then C ≤ |A|B and |A|B ≤ C. Importantly, under

our new formulation, |A|B is algorithmic and total, and provides an algorithm for type difference.

All conflicts in two non-apart types can be resolved by applying type normalization twice: first

compute |A|B, then compute |B| |A |B .

3 Apartness and Guarded Subtyping for Intersection Types
This section shows how to derive algorithmic formulations of apartness and how to formulate

guarded subtyping with intersection types and a merge operator.

3.1 Syntax and Subtyping
Types. Our type syntax follows the syntax of 𝜆+𝑖 by Huang et al. [2021], extended with a bottom

type and a singleton type. The top and bottom types are crucial here to support type difference

and normalization, as suggested by Xu et al. [2023]. Singleton types Sig l are included for encoding

record types. A labelled type (or single-field record type) {𝑙 : 𝐴} is represented by the function

type Sig l → A. A multi-field record type is then represented as an intersection of labelled types. A

record type is an overloaded function, where the input type is the label to be projected.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:12 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Types 𝐴, 𝐵,𝐶 F Int | ⊤ | ⊥ | A&B | A → B | Sig l
Ordinary Types A◦, B◦,C◦ F Int | ⊤ | ⊥ | A → B◦ | Sig l
Labelled type encoding {𝑙 : 𝐴} ≜ Sig l → A

Record encoding {𝑙1 : 𝐴1, . . . , 𝑙𝑛 : 𝐴𝑛} ≜ {𝑙1 : 𝐴1} & . . . & {𝑙𝑛 : 𝐴𝑛}

𝐴 ≤ 𝐵 (Declarative BCD Subtyping)

A ≤ A ⊥ ≤ A A ≤ ⊤

B ≤ A C ≤ D

A → C ≤ B → D

A ≤ B B ≤ C

A ≤ C

A1 &A2 ≤ 𝐴𝑖

A ≤ B1 A ≤ B2
A ≤ B1 &B2

(A → B1) & (A → B2) ≤ A → (B1 &B2)

A <: B (Algorithmic BCD Subtyping)

A <: A ⊥ <: A A <: ⊤

C◦ D◦ B <: A C <: D

A → C <: B → D

A ≃ A1 &A2 𝐴𝑖 <: B

A <: B

B ≃ B1 &B2 A <: B1 A <: B2
A <: B

⊢𝑠 A (Type Well-Formedness (Strict))

⊢𝑠 Int ⊢𝑠 Sig l ⊢𝑠 ⊥ ⊢𝑠 ⊤
⊢𝑠 A ⊢𝑠 B B◦

⊢𝑠 A → B

⊢𝑠 A ⊢𝑠 B A ≠ ⊤ B ≠ ⊤ A ∗ B
⊢𝑠 A&B

A ≃ B&C (Type Splitting)

A&B ≃ A&B

B ≃ B1 &B2
A → B ≃ (A → B1) & (A → B2)

Fig. 4. BCD subtyping, ordinary types, splittable types and the strict type well-formedness.

Subtyping, ordinary and splittable types. BCD subtyping [Barendregt et al. 1983] is a widely used

subtyping relation for intersection types. BCD subtyping includes common intersection type rules

that ensure the commutativity (A&B ≤ B&A) and associativity (A& (B&C) ≤ (A&B) &C) of
subtyping, which allows us to handle multi-field record types as intersection types without any

loss of precision. The most important feature of BCD-style subtyping is that it allows function

types to distribute over intersection types. We have all the types in the original BCD type system.

The declarative subtyping rules, presented at Fig. 4, extend BCD subtyping with rules for singleton

types and the bottom type, but exclude the top arrow rule ⊤ ≤ ⊤ → ⊤, which does not appear to

be particularly practical—though such a rule can be added with a valid coercion. The extension of

singleton and bottom types is easy as they do not interact with the intersection subtyping rules.

On the right of the middle of Fig. 4 shows an algorithmic formulation of subtyping, that eliminates

transitivity and is equivalent to the declarative formulation [Huang et al. 2021]. This algorithmic

formulation relies on two notions, ordinary types and splittable types, which are shown in Fig. 4.

Ordinary types [Davies and Pfenning 2000], are types that do not contain top level intersections.

In BCD subtyping, arrow types such as A → B&C may behave like intersection types due to

distributivity. In the algorithmic formulation (A <: B) of subtyping (A ≤ B) we restrict the notion of

ordinary types to exclude such types. Splittable types are the complement of ordinary types. Type

splitting separates the intersection components inside intersection-like types. Though a splittable

type may not always have intersection at its top-level, the type is still equivalent to an intersection.

To fully analyze the subtyping behaviour, we define splittable types as shown in Fig. 4.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:13

3.2 Type Well-Formedness
Type well-formedness ensures that a type always has at most one unique coercion to another

well-formed type. These conditions, along with the guarded subtyping introduced later in Sec. 3.4,

prevent the casting result from being ill-typed. Type well-formedness is algorithmic, and therefore

uses the algorithmic apartness in Sec. 3.3 instead of apartness specification A ∗𝑠 B in its definition.

We will motivate the design of type well-formedness through an intersection type example. First,

we want to avoid overlap within types, specifically avoiding situations where A& B exists without

A ∗ B. For example, Int& Int leads to ambiguity inside types, since there is more than one coercion

to type Int. Second, to ensure that coercions are unique, we require that the splitting results of

the type are always apart. In particular, for a type like A → B&C, we need (A → B) ∗ (A → C)
given that A → B&C ≃ (A → B) & (A → C). This requires a more rigorous approach than simply

checking the apartness of intersections structurally, as B ∗ C does not imply (A → B) ∗ (A → C).
An example occurs when B equals ⊤. Function types like Int → ⊤&Bool may seem harmless if

we only verify the apartness of the intersection in the function’s return type. However, it splits

into overlapping types Int → ⊤ and Int → Bool. To achieve an algorithmic version of apartness

(shown in Figure 5) satisfying the requirement of uniqueness that every type component being

apart, we introduce a type well-formedness definition that possesses the following properties:

Theorem 3.1 (Well-Formed Types have Apart Components). If ⊢𝑠 A, and A ≃ B&C, then
A = B&C, B ∗ C, ⊢𝑠 B and ⊢𝑠 C .

With this property, we can later show completeness of the apartness algorithm in Sec. 3.3. Type

well-formedness may seem restrictive here, as it requires arrow types (like A → B&C) to be written
in its equivalent form (A → B) & (A → C). However, this restriction will be partially resolved in

Sec. 4 by relaxing well-formedness and fully resolved in Sec. 5 by transforming every type into a

well-formed type by type normalization.

3.3 Apartness
Our goal is to define an algorithmic formulation of apartness that is equivalent to the specification

in Sec. 2.4. Our algorithmic apartness relation (A ∗ B) is defined for BCD subtyping [Barendregt

et al. 1983], and it essentially expresses that for types 𝐴 and 𝐵, it is always possible to extract all

the information from values of both types without ambiguity. To formally define apartness and

ambiguity, we use an auxiliary relation A ≬ B that expresses whether two types A and B contain

shadowing (i.e. if one’s component is a subtype of the other’s). We want to define our apartness

A ∗ B based on the negation of the shadowing relation A ≬ B (i.e., A ∗ B = ¬(A ≬ B)).
Shadowing. The shadowing relation determines whether the type components of two types A

and B shadow each other, and whether there is ambiguity between A and B. Some examples of

types A and B and their shadowing relations are:

𝐴 = Int 𝐵 = Bool ¬(A ≬ B)
𝐴 = Int&Bool 𝐵 = Bool A ≬ B

𝐴 = Int 𝐵 = ⊤ ¬(A ≬ B)
𝐴 = Int → String 𝐵 = Bool → String ¬(A ≬ B)
𝐴 = Int → String 𝐵 = (Int&Bool) → String A ≬ B

Most of these examples are straightforward. Notably, in the third example where B is⊤, we consider
⊤ to have no type component. Therefore, shadowing of type A over type ⊤ cannot occur as the

two types do not share any type component. Besides, ⊤ cannot shadow any type. The negation of

this judgement then always allows the ⊤ type to be apart with any type.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:14 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

A ≬ B (Type Shadowing)

A ≃ A1 &A2

𝐴𝑖 ≬ B

A ≬ B

A◦

B ≃ B1 &B2 A ≬ 𝐵𝑖
A ≬ B

A◦ B◦

A <: B B ≠ ⊤
A ≬ B

A◦ B◦

B <: A A ≠ ⊤
A ≬ B

Fig. 5. Shadowing.

We provide an inductive definition of A ≬ B in Fig. 5. Ignoring the gray conditions, we can see

that shadowing is defined when one type is a subtype of the other, or when any of their splitting

components have a shadowing relationship. These gray-colored side conditions reduce overlap

between the rules and help make the implementation more efficient. We have proved that adding

these conditions leads to an equivalent definition. With these conditions, intersection-like types

are always split, and only the ordinary components are compared in subtyping checks to decide

whether there is a conflict. Now we can write our algorithmic apartness A ∗ B as ¬(A ≬ B).

Soundness and completeness of algorithmic apartness. The formulation of apartness A ∗ B via

the negation of A ≬ B is sound with respect to the specification A ∗𝑠 B given in Sec. 2.4. Com-

pleteness requires more work. We have (Int → String) ∗𝑠 (Bool → String) & ((Int&Bool) →
String) but not (Int → String) ∗ (Bool → String) & ((Int&Bool) → String). As suggested

in Section 2.4, Int → String has one minimal ordinary type component, namely itself, while

(Bool → String) & ((Int&Bool) → String) also has only one minimal ordinary type component

Bool → String. Then, since the only type components are unrelated by subtyping, the specification

apartness holds. However, for algorithmic apartness, we recursively decompose the types and try

to find the subtyping relation between them. Therefore we do not have (Int → String) ∗ (Bool →
String) & ((Int&Bool) → String) for (Int&Bool → String) ≤ Int → String. To address such

incompleteness, we introduce a notion of well-formed types ⊢𝑠 A which restricts intersections to

apart types. Under this restriction, we are now able to formulate a form of completeness.

Theorem 3.2 (Soundness of Apartness). If A ∗ B, then A ∗𝑠 B.

Theorem 3.3 (Completeness of Apartness). If ⊢𝑠 A, ⊢𝑠 B, and A∗𝑠B, then A ∗ B.

3.4 Guarded Subtyping
Next we introduce the guarded subtyping relation. With disjointness, a term of type A can always

be cast to a term of type B when A ≤ B, without introducing ambiguity. However, with apartness,

this is no longer true. Since apartness allows more ambiguity, we need to have a notion to validate

casting. The guarded subtyping relation is essentially a restricted version of subtyping. Unlike

subtyping, guarded subtyping is not transitive.

Definition. Guarded subtyping, denoted as A ≾ B, ensures that a term of type A can be unam-

biguously cast to a term of type B. This unambiguity arises not merely because A is a subtype of B,
but importantly because there is a unique way to coerce a value of type A into a value of type B. In
other words, any value of type A can be unambiguously mapped to a value of type B.

To provide more intuition, we can illustrate the guarded subtyping with some concrete examples:

𝐴 = (Int → String) & (Bool → String) 𝐵 = Bool → String A ≾ B

𝐴 = (Int → String) & (Bool → String) 𝐵 = (Int&Bool) → String ¬(A ≾ B)
𝐴 = (Int → String) & (Bool → String) 𝐵 = (Bool → String) & (Int → String) A ≾ B

𝐴 = (Int → String) & (Bool → String) 𝐵 = String ¬(A ≾ B)
𝐴 = (Int → String) & (Bool → String) 𝐵 = ⊤ A ≾ B

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:15

A ≾ B (Guarded Subtyping)

C-andL

B◦ A ≃ A1 &A2

A1 ≾ B ¬(A2 <: B)
A ≾ B

C-andR

B◦ A ≃ A1 &A2

A2 ≾ B ¬(A1 <: B)
A ≾ B

C-and

B1 ≃ B2 &B3
A ≾ B2 A ≾ B3

A ≾ B1

C-ord

(A1 → B1)◦ (A2 → B2)◦ A2 ≾ A1 B1 ≾ B2
A1 → B1 ≾ A2 → B2

C-int

Int ≾ Int

C-sig

Sig l ≾ Sig l

C-top

A ≾ ⊤

C-bot

⊥ ≾ ⊥

Fig. 6. Guarded subtyping.

In the first example, we can find a unique coercion from (Int → String) & (Bool → String) to
Bool → String, since only the term of type Bool → String can be coerced to a term of type Bool →
String. However, when casting a term of (Int → String) & (Bool → String) to (Int&Bool) →
String, we are unable to tell whether the resulting (Int&Bool) → String comes from the term

that implements Int → String or the one that implements Bool → String. Therefore, it is rejected
by the guarded subtyping relation. In the last three examples we consider cases where B is an

intersection type, a type that is apart from A, and the type ⊤. For intersection type cases, we only

need to check whether every type component in type B is a guarded supertype of A. For types that
do not have a subtyping relation, such coercion is not permissible as terms of B cannot provide

sufficient information to build a value of A. For the ⊤ type, as there is only one value ⊤ associated

with it, mapping from any set of values to it is always unique and never leads to ambiguity.

Guarded subtyping is defined in Fig. 6. Rules C-andL and C-andR suggest that only one of the

two parts of an intersection-like type could contribute to the supertype, otherwise ambiguity is

introduced. For example, we are not able to choose from a merge of (Int → String) & (Bool →
String) for the type (Int&Bool) → String. Note that these two rules use the negation of subtyping

rather than guarded subtyping, since they are checking if there exists a unique path from the

subtype to the supertype. If the condition is relaxed to be ¬(A1 ≾ B) or ¬(A2 ≾ B), we will be
able to derive Int& Int& Int ≾ Int due to ¬(Int& Int ≾ Int). Rule C-and is unsurprising: when the

supertype is an intersection-like type, the unique coercion exists when there exists unique coercions

to both of its intersection components. Finally rules C-int, C-sig, C-top, and C-ord define the

behaviour of casting for non-intersection types. The notable case is the function rule C-ord, where

we also enforce that the relation is contravariant on the input types of functions.

Soundness. The guarded subtyping relation always leads to safe casting as the casting is an upcast,
and there is no ambiguity. No casting from both A and B is available unless they are cast to type ⊤.
Thus, no ambiguity is caused during casting.

Theorem 3.4 (Soundness of Guarded Subtyping). If A ≾ B, then A ≤ B.

Theorem 3.5 (Safe Casting). If A ∗ B and A ≤ C and B ≤ C, then ¬(A&B ≾ C) or ⊤ ≤ C.

4 The 𝜆∗ Calculus
In this section, we introduce a lambda calculus with a merge operator, referred to as 𝜆∗. Similar

to previous calculi featuring disjoint intersection types (e.g. F+𝑖 [Fan et al. 2022]), 𝜆∗ uses type
annotations to trigger dynamic casts that coerce values. These values are often aggregated through

merges that are statically checked for conflicts. We will first explain how the type system employs

the concept of apartness to validate merges and support overloaded functions. Following this, we

will explore dynamic dispatching as demonstrated in the reduction rules.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:16 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

(Syntax of Expressions)

Expressions e F x | i | ⊤ | {l} | 𝜆A→Bx . e | fixA x . e | e1 e2 | e : A | e1 , , e2
Function-Like Values u F 𝜆A→Bx . e | u : A → B

Values v F u | i | ⊤ | {l} | v1 , , v2

⊢𝑟 A (Relaxed Type Well-Formedness)

⊢𝑠 A

⊢𝑟 A

⊢𝑟 A ⊢𝑠 B

⊢𝑟 A → B

⊢𝑟 A ⊢𝑟 B A ∗ B
⊢𝑟 A&B

⊢ Γ (Well-Formedness of Typing Environments)

⊢ ·
⊢ Γ ⊢𝑟 A x ∉ dom Γ

⊢ Γ, x : A

Γ ⊢𝑡 e ⇔ A (Typing Rules of 𝜆∗)

TTyp-top

⊢ Γ

Γ ⊢𝑡 ⊤ ⇒ ⊤

TTyp-lit

⊢ Γ

Γ ⊢𝑡 i ⇒ Int

TTyp-sig

⊢ Γ

Γ ⊢𝑡 {l} ⇒ Sig l

TTyp-fix

Γ, x : A ⊢𝑡 e ⇐ A

Γ ⊢𝑡 fixA x . e ⇒ A

TTyp-anno

Γ ⊢𝑡 e ⇐ A

Γ ⊢𝑡 e : A ⇒ A

TTyp-var

⊢ Γ
x : A ∈ Γ

Γ ⊢𝑡 x ⇒ A

TTyp-abs

⊢𝑟 A → B
Γ, x : A ⊢𝑡 e ⇐ B

Γ ⊢𝑡 𝜆A→Bx . e ⇒ A → B

TTyp-app

B ⊢ A� C
Γ ⊢𝑡 e1 ⇒ A
Γ ⊢𝑡 e2 ⇒ B

Γ ⊢𝑡 e1 e2 ⇒ C

TTyp-merge

A ∗ B
Γ ⊢𝑡 e1 ⇒ A
Γ ⊢𝑡 e2 ⇒ B

Γ ⊢𝑡 e1 , , e2 ⇒ A&B

TTyp-sub

⊢𝑟 B
Γ ⊢𝑡 e ⇒ A

A ≾ B

Γ ⊢𝑡 e ⇐ B

Fig. 7. The syntax, type well-formedness and typing rules for 𝜆∗.

4.1 Syntax and the Type System of 𝜆∗
Expressions and values. We define the syntax of expressions and values at the top of Fig. 7. Every

function in 𝜆∗ must be accompanied by annotations, including the parameter and return type. These

annotations can be nested layer by layer. We refer to lambdas with multiple annotation layers as

function-like values and use the meta-variable u to represent them. In addition to functions, 𝜆∗
supports singleton values ({l}), fixpoints (fixA x . e) and merges (e1 , , e2). The top value ⊤ can be

viewed as a merge with zero components.

Relaxed type well-formedness. We use a specially crafted type well-formedness definition in 𝜆∗,
defined in the middle of Fig. 7. In the strict type well-formedness ⊢𝑠 A (see Fig. 4), intersections

cannot contain ⊤, and arrow types A → B must enforce that the type B is a non-intersection

type. The relaxed well-formedness ⊢𝑟 A loosens the strict criteria, allowing top types ⊤ to be

intersected, and arrow types to have intersection types as the return types. Though the relaxed type

well-formedness offers greater flexibility, its primary purpose is to enable a value-to-value mapping

between 𝜆 |∗| and 𝜆∗. If a value in 𝜆 |∗| were mapped to a non-value in 𝜆∗, then the correspondence

would also need to extend substitution in 𝜆 |∗| (with values) to substitution in 𝜆∗ (with non-values),

making it nearly impossible to track equivalence between the source and target calculi.

To ensure this value-to-value mapping, function-like values are allowed to have only arrow

type annotations, such as 𝜆A→B&Cx . e. In contrast, annotations like 𝜆x . e : (A → B) & (A → C)
are disallowed, as they could evaluate to a merge of functions, e.g., 𝜆A→Bx . e , , 𝜆A→Cx . e, which
is not a value in the target calculus. Therefore, it is crucial to permit arrow types that return

intersections—such as A → B&C—to be well-formed, while avoiding intersection types at the top

level of function annotations. Although relaxed type well-formedness admits more components, it

remains safe due to completeness with respect to apartness. Moreover, it ensures that equivalent

types can always be uniquely and safely coerced.

Theorem 4.1 (Soundness of Relaxed Well-Formedness). If ⊢𝑠 A then ⊢𝑟 A.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:17

B ⊢ A �̸ (Inapplicability)

¬(B <: A)
B ⊢ A → C �̸ B ⊢ Int �̸ B ⊢ Sig l �̸ B ⊢ ⊤ �̸

D ⊢ A �̸ D ⊢ B �̸

D ⊢ A&B �̸

B ⊢ A� C (Type Dispatching)

B ≾ A

B ⊢ A → C � C

A1 ∗ B1
D ⊢ A� A1 D ⊢ B� B1

D ⊢ A&B� A1 &B1

D ⊢ A� A1

D ⊢ B �̸

D ⊢ A&B� A1

D ⊢ A �̸
D ⊢ B� B1

D ⊢ A&B� B1

Fig. 8. The type dispatching relation for 𝜆∗.

Theorem 4.2 (Well-formed Types Respect Apartness). If ⊢𝑟 A and A ≃ B&C, then B ∗ C.
Theorem 4.3 (Completeness for Relaxed Well-Formedness). For all 𝐴 𝐵 that ⊢𝑟 A and ⊢𝑟 B,

if A∗𝑠B then A ∗ B.
Theorem 4.4 (Round-Trip Coercion). For all 𝐴 𝐵, if ⊢𝑟 A, ⊢𝑟 B, A ≤ B, and B ≤ A, then A ≾ B.

Typing rules. As shown at the bottom of Fig. 7, a bidirectional type system [Dunfield and Kr-

ishnaswami 2021; Pierce and Turner 2000] is designed to characterize the static aspects of 𝜆∗. Its
typing judgments operate in two modes: under inference mode ⇒, a unique type is deduced from

the typing context for the expression; while in checking mode ⇐, the type is given (along with the

typing context and the expression), and the expression is verified against the type. In our calculus,

every typed expression has an inferred type (e.g. A). Thus being checked (e.g., by B) is equivalent
to examining the subtyping relationship between A and B. All checked and inferred types are all

guaranteed to be well-formed.

Theorem 4.5 (Typing Respects Type Well-Formedness). If Γ ⊢𝑡 e ⇔ A, then ⊢𝑟 A.
This formulation is also algorithmic, ensuring that no information is hidden via subtyping.

In other words, we are fully aware of what e can contain from Γ ⊢𝑡 e ⇒ A. Therefore, we can
determine that two expressions are free of conflicts simply by comparing their inferred types using

apartness (defined in 3.3) in rule TTyp-merge. This approach is typical for type systems featuring

disjoint intersection types with an unbiased merge operator. In such type systems, expressions can

be composed via merging directly, as long as they do not create ambiguity, such as in 1 , , True , , f (f
represents any legal function). Since apart types are not distinguishable in every possible context,

our subsumption rule (rule TTyp-sub) is equipped with the guarded subtyping relation (defined

in 3.4) to reject ambiguous casts. Merges can also be used directly as functions. For example,

(f : Int → Bool) , , (g : Bool → Bool) type-checks when applied to an integer or boolean argument.

In rule TTyp-app, the two inference types of the applied term and the argument are passed to the

type dispatching relation, which computes the return type.

Type dispatching. Type dispatching is defined in Fig. 8. In 𝜆 |∗| and 𝜆∗, type dispatching is only
used for well-formed types. So, in the following text, we can assume the input type A and B are

well-formed, and we try to get a well-formed type as return type.

First we define B ⊢ A �̸ to denote that A cannot serve as a function type that takes a value of

type B as an argument: there is no type C such that A <: B → C. For conciseness, We use B ⊢ A�
to represent the negation of B ⊢ A �̸. We use the subtyping judgment in inapplicability instead

of ¬(B ≾ A) because we want to forbid all possible coercions instead of all unique coercions from
B to A. Then we define the type dispatching relation B ⊢ A� C which does two more things: It

computes the minimal return type, and also ensures that there is no ambiguity in the application

process. B ⊢ A�C indicates that applying a term of type A to a term of type B should return a term

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:18 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

v1 ↩→A v2 (Casting)

A ≃ B&C v ↩→B v1 v ↩→C v2
v ↩→A v1 , , v2

u : A → B (C → D)◦ C <: A B <: D

u ↩→C→D u : C → D

A◦ v1 ↩→A v′
1

v1 , , v2 ↩→A v′
1

A◦ v2 ↩→A v′
2

v1 , , v2 ↩→A v′
2

i ↩→Int i {l} ↩→(Sig l) {l} v ↩→⊤ ⊤

v1 • v2 ⇒ e (Parallel Application)

B ⊢ A1 � B ⊢ A2�
v1 : A1 v2 : A2 v : B

v1 , , v2 • v ⇒ (v1 v) , , (v2 v)
v2 : A v : B B ⊢ A �̸

v1 , , v2 • v ⇒ v1 v

v1 : A v : B B ⊢ A �̸

v1 , , v2 • v ⇒ v2 v

e1 ↩→ e2 (Small-Step Semantics for 𝜆∗)

StepN-beta

v ↩→A v′

(𝜆A→Bx . e) v ↩→ (e[x ↦→ v′]) : B

StepN-absanno

v ↩→A v′

(u : A → B) v ↩→ (u v′) : B

StepN-papp

(v1 , , v2) • v3 ⇒ e

(v1 , , v2) v3 ↩→ e

StepN-annov

¬(value v : A) v ↩→A v′

v : A ↩→ v′

StepN-anno

e ↩→ e′

e : A ↩→ e′ : A

StepN-fix

fixA x . e ↩→ e[x ↦→ fixA x . e] : A

StepN-appl

e1 ↩→ e′
1

e1 e2 ↩→ e′
1
e2

StepN-appr

e2 ↩→ e′
2

v1 e2 ↩→ v1 e′2

StepN-mergel

e1 ↩→ e′
1

e1 , , e2 ↩→ e′
1
, , e2

StepN-merger

e2 ↩→ e′
2

v1 , , e2 ↩→ v1 , , e′2

Fig. 9. The operational semantics of 𝜆∗.

of type C. Since the function argument is cast before beta reduction, we need to verify that the

argument type is a guarded subtype of the parameter type. Thus, type dispatching formalizes the

behaviour of an applicative intersection type. The soundness theorems for type dispatching, which

computes the most specific return type given a function type A and an argument type B, are:

Theorem 4.6 (Soundness and Minimality of Type Dispatching). If B ⊢ A� C, then:
• If ⊢𝑟 A, then ⊢𝑟 C.
• A <: B → C
• ∀ D, if A <: B → D then C <: D

However, completeness is intractable here because guarded subtyping poses a unique coercion

requirement on the argument type. This is hard to track in the subtyping relation; therefore we leave

it here as an open problem. Note that for every well-typed expression in 𝜆∗, its type is determined

in a syntax-directed way. In the following text, we use v : A to denote such a syntactic lookup,

meaning that the inferred type of v is A.

4.2 Operational Semantics
In Fig. 9, we introduce three reduction relations to define the operational semantics of 𝜆∗. The
casting relation v1 ↩→A v2 takes a value v1 and a type A and generates a value v2, upcasting v1 to
match type A. The parallel application relation v1 • v2 ⇒ e distributes the argument v2 into the

merge v1 and achieves dynamic dispatching. The small-step reduction e1 ↩→ e2 indicates that e1
evaluates to e2. At runtime, we replace all occurrences of guarded subtyping A ≾ B by subtyping

A ≤ B since type checking is performed prior to evaluation. Moreover, A ≤ B is computationally

cheaper thanA ≾ B, since it merely checks for the existence of a coercion whereas guarded subtyping
verifies the uniqueness of coercions.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:19

Function application. The evaluation rules are presented at the bottom of Fig. 9. There are three

rules for function application: rule StepN-beta, rule StepN-absanno, and rule StepN-papp, which

cover lambdas, function-like values, and merges, respectively. In rule StepN-beta, we first cast the

application argument by the parameter annotation, and then use the result for beta reduction. The

entire term is then wrapped by the function return type annotation, which denotes a delayed cast.

Rule StepN-absanno handles the type annotations of a function-like value similarly. Eventually,

when all outer annotations are decomposed, a function-like value becomes a lambda function,

which then follows the beta rule. In addition to function-like values, merges can also be at the

function position. Dynamic dispatching in rule StepN-papp is achieved via parallel application.

Parallel application and casting. Defined in the middle of Fig. 9, the parallel application relation

v1 • v2 ⇒ e constructs an application expression e for each function contained in v1, provided
that the resulting application is well-typed. The unwanted parts of merges are filtered out. This

type matching is performed dynamically because functions always have explicit type annotations.

By comparing the parameter type with the type of the argument, it is straightforward to determine

whether the requirements for a function are satisfied. As the type system already ensures the well-

typedness of the application results, we only need to apply the function whenever the argument

type matches (denoted by B ⊢ A�).

The definition of casting is shown at the top of Fig. 9. All annotations can be interpreted as

a cast-to-do, unless they are part of values, as indicated by rule StepN-annov (while annotated

values can only be function-like values). Type annotations may be decomposed (rules StepN-beta

and StepN-absanno) or duplicated (rule StepN-fix), similar to what occurs in a cast calculus

within the gradual typing setting [Wadler and Findler 2009]. Casting of splittable types ensures
that no intersection types remain at the top level or in the function return type. Then, for each

such ordinary type, a value is selected and refined (in the case of functions) so that the inference

type of the value matches that type (recall that type splitting relation is defined in Fig. 4). Finally,

all these values are merged. For example, ‘a’ , , 1 , , True ↩→Bool& Int True , , 1.
This process involves treating a merge as a function. For instance, Int → (Int&Bool) ≃ (Int →

Int) & (Int → Bool) means that a merge of type (Int → Int) & (Int → Bool) will be generated
instead of a value of type Int → (Int&Bool) in v1 ↩→Int→(Int&Bool) v2. To characterize the

relationship between the actual type and the desired type, we use runtime subtyping in our type

preservation theorem, which we will explain later. Without any constraints, the casting rule for

ordinary types is non-deterministic: both 1 , , 2 ↩→Int 1 and 1 , , 2 ↩→Int 2 are derivable. However, a

well-typed cast always produces a unique result.

Theorem 4.7 (Determinism of Casting in 𝜆∗). If v : A and A ≾ B, then from v ↩→B v1 and
v ↩→B v2 we can derive v1 = v2.

As one can observe, our casting always attaches new annotation to function-like values. However,

the roundtrip coercion still preserves behavioral equivalence after erasing the type annotations. We

define the type annotation erasing function be J𝑒K, then we have the behavioral equivalence as:

Theorem 4.8 (Behavioral Eqivalence of Round-Trip Coercion). If for all 𝑖 ∈ [1, 𝑛], ⊢𝑟 𝐴𝑖 ,
and v𝑖−1 can be coerced to v𝑖 via v𝑖−1 ↩→𝐴𝑖

v𝑖 , then if 𝐴 𝑗 = 𝐴𝑘 , then J𝑣 𝑗 K = J𝑣𝑘K.

4.3 Type Safety
Although each well-typed program has a unique inferred type, this type is not precisely preserved

during evaluation. We use the runtime subtyping relation A ≪𝑇 B to connect the type of the reduced

term with that of the redex. The definition and full details of it can be found in the Appendix.

Theorem 4.9 (Preservation of 𝜆∗).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:20 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

• If · ⊢𝑡 v1 ⇒ A, A ≾ B, ⊢𝑟 B, and v1 ↩→B v2, then ∃ C, s.t. · ⊢𝑡 v2 ⇒ C and C ≪𝑇 B.
• If · ⊢𝑡 e ⇒ A and e ↩→ e′ then ∃A′, A′ ≪𝑇 A, and · ⊢𝑡 e′ ⇒ A′.
• If · ⊢𝑡 e ⇐ A and e ↩→ e′ then · ⊢𝑡 e ⇐ A.

The operational semantics of 𝜆∗ is deterministic for well-typed expressions.

Theorem 4.10 (Determinism of the Small-Step Reduction in 𝜆∗). If · ⊢𝑡 e ⇒ A and e ↩→ e1
and e ↩→ e2 then e1 = e2.

Moreover, our calculus adheres to the principle:Well-typed programs do not go wrong.We can

establish type soundness through a progress theorem and the above preservation theorems.

Theorem 4.11 (Progress). If · ⊢𝑡 e ⇒ A then e is a value or ∃𝑒′, e ↩→ e′.
Theorem 4.12 (Type Soundness of 𝜆∗). If · ⊢𝑡 e ⇔ A and e ↩→∗ e′ then e′ is a value or ∃e′′,

e′ ↩→ e′′.

5 The Source Calculus 𝜆 |∗|
In this section, we introduce the lambda calculus 𝜆 |∗| together with a type normalization procedure.

The target calculus 𝜆∗ imposes strong type well-formedness restrictions. Here, we demonstrate

that 𝜆 |∗| can model a source calculus without these restrictions. Through type normalization, all

well-typed 𝜆 |∗| programs can be translated into well-typed 𝜆∗ programs, indicating that 𝜆∗’s type
restrictions are not fundamental but merely simplify the design of a calculus with apartness.

5.1 Type Normalization
Though type apartness A ∗ B along with the well-formedness condition ⊢𝑟 A provides a sound

calculus 𝜆∗, unrestricted intersection types can be useful in certain cases, as illustrated in Fig. 3. To

accommodate such cases, we impose a weaker restriction on types: instead of requiring A and B to

be apart directly, we check their normalized forms for apartness. We use type normalization to

compute these normalized forms so that any types satisfying apartness specification A ∗𝑠 B will

have their normalized form algorithmically apart. The formulation of type normalization process is

not unique, as long as the return type has all of its type components apart and being equivalent to

the original type. However, as suggested by Theorems 4.4 and 4.8, the coercion between any two

equivalent types is unique, type-safe and behaviour preserving, therefore any type normalization

process exhibit no observable difference.

Normalization as a divide-and-conquer process. |A|B denotes that the type A will be normalized

under the type B. A denotes the type we want to normalize, and we want to produce a result that

does not overlap with B. B also interacts with the intermediate result during the divide-and-conquer

process to avoid unnecessary elimination, which will be shown below. We do the normalization of

each component of a type A from left to right. The intuition behind type normalization of A under

B is that A can be viewed as a series (or a list) of type components concatenated together with the

type operator & . During normalization, we aim to eliminate duplicated components. The process

follows a divide-and-conquer strategy by splitting A into two intersection components, A1 and A2.

In our algorithm, we first normalize the right-hand side series of components A2 under A1 &B,
producing an intermediate result C. We then normalize the left-hand side A1 using the type

context B&C. This approach avoids repeated normalization. For instance, given Int& Int, we do
not normalize the right-hand Int by the left-hand Int and then repeat the process for the reverse.

Repeated normalization could erroneously result in ⊤&⊤. By leveraging the intermediate result C,
the normalization remains deterministic and avoids such issues. To ensure determinism and avoid

reducing to ⊤&⊤, we define specific cases for handling the result C produced from normalizing

A2 under A1 &B. While the cases differ, they follow the same underlying principles.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:21

Rules of |A |B , where we take the normalization result |A | = |A |⊤ (Type Normalization)

|Int |B = Int (if not B <: Int)
|Sig l |B = Sig l (if not B <: Sig l)

|⊥|B = ⊥ (if not B <: ⊥)
|A1 → A2 |B = |A1 | → |A2 | (if (A1 → A2)◦ and not B <: A1 → A2)

|A |B = ⊤ (if A◦
and B <: A)

|A |B = |A1 | (B&C) &C where𝐶 = |A2 |B&A1 (if A ≃ A1 &A2, |A2 |B&A1 ≠ ⊤ and |A1 |B&C ≠ ⊤
|A |B = |A2 |B&A1 (if A ≃ A1 &A2, |A2 |B&A1 ≠ ⊤and |A1 |B& (|A2 |B&A

1
) = ⊤)

|A |B = |A1 |B (if A ≃ A1 &A2, |A2 |B&A1 = ⊤)

Γ ⊢ e ⇔ A (Source Typing)

Γ ⊢ e1 ⇒ A |B | ⊢ |A | � C Γ ⊢ e2 ⇒ B

Γ ⊢ e1 e2 ⇒ C

Γ ⊢ e ⇒ A |A | ≾ |B |
Γ ⊢ e ⇐ B

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B |A | ∗ |B |
Γ ⊢ e1 , , e2 ⇒ A&B

e ↩→𝑆 e′ (Source Reduction)

v ↩→|A | v′

𝜆A→Bx . e v ↩→𝑆 (e[x ↦→ v′]) : |B |

v2 ↩→|A | v′
2

(u1 : A → B) v2 ↩→𝑆 (u1 v′2) : |B |

¬(value v : A) v ↩→|A | v′

v : A ↩→𝑆 v′

Fig. 10. Type normalization, (selected) typing and reduction rules for 𝜆 |∗| .

For example, consider normalizing Int& (Bool& Int) under ⊤. The process proceeds as follows:
|Int| (⊤& Int) &Bool = ⊤ ¬(⊤&Bool <: Int) (1)

|Bool| (⊤& Int) & Int = Bool ¬(⊤& Int <: Bool) (2)

|Bool& Int|⊤& Int = Bool (1) 𝑎𝑛𝑑 (2) (3)

|Int|⊤&Bool = Int ¬(⊤&Bool <: Int) (4)

|Int& (Bool& Int) |⊤ = Int&Bool (3) 𝑎𝑛𝑑 (4) (5)

The final result is Int&Bool, demonstrating how the process avoids ambiguity and ensures a

deterministic outcome. This divide-and-conquer approach operates bottom up. At step (5), we aim to

normalize Int& (Bool& Int) under type ⊤. To do so, we split Int& (Bool& Int) and normalize both

Int and Bool& Int separately. Following a similar strategy, we observe that at step (3), Bool& Int
normalizes to Bool under ⊤& Int, while Int normalizes to Int under ⊤&Bool. As a result, after
normalization, we obtain Int&Bool. This approach is essential for achieving complete and sound

normalization while preserving determinism.

Normalization starts from an empty context (⊤). The operation |A|⊤ = C takes A as input and ⊤
as context, producing C as the normalized form of A. We use |A| to denote the result of |A|⊤. The
normalization process is idempotent, complete, deterministic, and sound.

Theorem 5.1 (Normalization is Idempotent). | |A|B |B = |A|B.
Theorem 5.2 (Totality of Normalization). For all A B, there exists C such that |A|B = C .

Theorem 5.3 (Determinism of Normalization). |A|B results in at most one C.

Theorem 5.4 (Soundness of Normalization). For all A, we have A ≤ |A| and |A| ≤ A.

Theorem 5.5 (Soundness of Guarded Subtyping). For all A B, if A ≤ B and B ≤ A, then
|A| ≾ |B|.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:22 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

The normalization procedure provides another way to show the completeness of apartness, since

normalization eliminates shadowed components in types, as suggested in Section 3.3.

Theorem 5.6 (Completeness of Apartness). For all A B, |A| ∗ |B| iff A ∗𝑠 B.

5.2 Source Typing and Operational Semantics
Source typing is not very different from the target typing of 𝜆∗. The key difference is that we check

whether the normalized result type checks. We can perform a weaker check on all the types as

long as their normalized form satisfies the constraints, instead of requiring types to be well-formed

and then checking the constraints. For instance, (String → Bool) & ((String& Int) → Bool) is not
mergeable with Int → Bool in 𝜆∗. However, that type is mergeable in 𝜆 |∗| since the normalization

process erases the (String& Int) → Bool component during the normalization process. Likewise,

we do the normalization in the reduction of 𝜆 |∗| . The only difference in the source reduction

semantics with 𝜆∗ reduction is that, we do a type normalization whenever casting occurs.

After carefully dealing with the normalized component in typing and evaluation, we can setup

the determinism and soundness properties of 𝜆 |∗| . Here the runtime subtyping relation A′ ≪ A, is
used for preservation of the source calculus, and works just as A′ ≪𝑇 A in 𝜆∗.

Theorem 5.7 (Determinism). If · ⊢ e ⇒ A and e ↩→𝑆 e1 and e ↩→𝑆 e2 then e1 = e2.

Theorem 5.8 (Progress). If · ⊢ e ⇒ A then e is a value or ∃𝑒′, e ↩→𝑆 e′.

Theorem 5.9 (Preservation).

• If · ⊢ e ⇒ A and e ↩→𝑆 e′ then ∃A′, A′ ≪ A, and · ⊢ e′ ⇒ A′.
• If · ⊢ e ⇐ A and e ↩→𝑆 e′ then · ⊢ e ⇐ A.

5.3 Translation to Target and Operational Correspondence
Before establishing a value-to-value mapping between the source calculus and the target calculus,

we first define the relationship between well-formedness and type normalization. Specifically,

well-formedness ⊢𝑠 A corresponds directly to normalization.

The source calculus permits more expressive terms—such as 1 , , ⊤ , , ⊤ or 𝜆Int→Int& Intx . e—that
would be rejected by the more restrictive type system of the target calculus. To bridge this gap, we

introduce a normalization process and design the target type system of 𝜆∗ to accept all normalized

source types as well-formed. This approach enables a smooth and consistent translation from source

to target, freeing us from the rigid constraints of 𝜆∗. Moreover, assuming that all type annotations

are normalized during translation into 𝜆∗, the reduction rules in the target calculus can be simplified.

For example, rules like rule StepN-annov no longer require runtime type normalization (like in

𝜆 |∗|), simplifying evaluation in the target language.

Theorem 5.10 (Eqivalence of Normalization and Well-Formedness). ⊢𝑠 A iff |A| = A.

We are now ready to establish the correspondence between 𝜆 |∗| and 𝜆∗. To incorporate type

normalization into type annotations in 𝜆 |∗| , we introduce a term normalization process, denoted

|e |, which translates type annotations into normalized types. Specifically, during translation, |e |
normalizes all type annotations: non-arrow types A become |A|, and arrow types A → B become

|A| → |B|. For instance, the term e : (Int& Int) is normalized to |e | : Int, while 𝜆A→B&Cx . e is
normalized to 𝜆 |A|→|B&C |x . e. so that a value-to-value mapping from 𝜆 |∗| to 𝜆∗ is preserved, while
the full details are in the Appendix. With term normalization in place, we can now formally state

and prove the soundness of both typing and evaluation:

Theorem 5.11 (Type-Safety of Translation). If · ⊢ e ⇒ A then ∃B, · ⊢𝑡 |e | ⇒ B and |B| = |A|.
Theorem 5.12 (Operational Correspondence). If e ↩→∗

𝑆
e′ then |e | ↩→∗

𝑇
|e′ |.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:23

6 Type Difference
A key consequence of using apartness instead of disjointness is that type difference [Xu et al. 2023]

becomes a total operation rather than a partial one. This section defines type difference in terms of

apartness and proves its totality.

6.1 Partial Type Difference with Disjointness
Type difference, introduced by Xu et al. [2023], provides a way to resolve conflicts in merges with

disjoint intersection types. The idea behind type difference, denoted as A\B, is to remove conflicting

type components from A, allowing the resolution of a conflicting merge of type A& B by rewriting

it as (A\B) &B. The following examples illustrate how type difference operates.

(Int → Bool)\(Int → Bool) = ⊤
(Int → Bool)\Int = Int → Bool

(Int → Bool)\(Bool → String) = Int → Bool

(Int → String)\(Bool → String) = undefined

Type difference eliminates overlapping components of Awith respect to B. For instance, Int → Bool
is completely removed when B is Int → Bool (or a subtype). However, when subtracting Int, the
function type Int → Bool remains unchanged because Int does not overlap with it.

More interesting cases arise with function types. In (Int → Bool)\(Bool → String), subtraction
has no effect on Int → Bool since the two types are disjoint. However, subtracting Bool → String
from Int → String presents a conflict: Int → String is neither fully shadowed by Bool → String
nor completely disjoint from it. Removing Int → String would result in information loss, while

keeping it would leave the conflict unresolved.

Despite its expressive power, type difference remains a partial operation since it cannot resolve

conflicts between types like Int → String andBool → String. Our observation is that type difference
is tightly coupled with the disjointness relation. The previous definition of disjointness may be too

strict in identifying conflicts. As we will show, apartness allows us to define a total type difference.

6.2 Total Type Difference with Apartness
Interestingly, type difference in our setting actually corresponds to the type normalization process,

and can be specified as a variant of apartness. Recall the apartness specification in Sec. 2.4.

Definition 2.4 (Apartness Specification). A ∗𝑠 B ≜ ∀C1 C2, if MinOrd C1 A ∧MinOrd C2 B, then
either C1 = ⊤ or C2 = ⊤ or (¬(C1 ≤ C2) ∧ ¬(C2 ≤ C1)).

Type normalization cannot resolve all the conflicts inside type A through the process |A|B. We can

glance through a few examples next:

|Int|Int = ⊤ (1) |Int → Bool|String→Bool = Int → Bool (2)

|Int& String|Int = String (3) |Int → Bool| (Int& String)→Bool = Int → Bool (4)

As we can see, the normalization process resolves conflicts well in the first three examples, as we

have the normalization result |A|B to be apart from B. We can use the merge of |A|B and B to replace

the ambiguous merge Awith B. But in the fourth case, the conflict is still not resolved as Int → Bool
shadows (Int& String) → Bool. Under the normalization process, supertype (Int& String) → Bool
cannot normalize Int → Bool, thus the conflict remains unsolved after the normalization process.

A closer glance at normalization shows that it removes all the conflicting components of type A
that are shadowed by type B. In some sense, it is a one-sided conflict resolution that cleans things

only in type A. Based on this observation, we can define the notion of half apartness as:

Definition 6.1 (Half Apart Specification). A <∗ B ≜ ∀C1 C2, if MinOrd C1 A ∧MinOrd C2 B, then
C2 = ⊤ ∨ ¬(C1 ≤ C2).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:24 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

which suggests that every component in the type B is not shadowed by the components in A,
representing a one-side apartness. Half apartness A <∗ B represents exactly the asymmetric variant

of apartness, as we can set up the equivalence of two variants of apartness as follows:

Theorem 6.2 (Apartness in terms of Half-Apartness). A <∗B and B <∗A, iff A ∗𝑠 B.
During type normalization |A|B = C, only type A is normalized while type B only serves as

contextual information guiding through the process. Thus, we can now set up the type normalization

exactly as the type difference specification [Xu et al. 2023] based on our one-sided apartness A <∗ B:
Definition 6.3 (Type Difference Specification). A\𝑠B = C ≜ A ≤ C ∧ B&C ≤ A ∧ B <∗C.
Furthermore, the type normalization process directly gives us an algorithmic formulation for

this type difference specification:

Theorem 6.4 (Type Difference as Type Normalization).

• A\𝑠B = |A|B.
• For all C, if A\𝑠B = C, then C ≤ |A|B and |A|B ≤ C.

The two properties imply that results produced by the type difference of type𝐴 and 𝐵 are equivalent

to |A|B. Thus we can use type normalization as an algorithm to compute type difference. Additionally,

type normalization process is total: we are always able to resolve conflicts in two arbitrary types.

This contrasts with the prior formulation disjointness-based type difference. Due to half apartness,

we have to do the type difference twice (on both A and B), to resolve conflicts on two types.

Theorem 6.5 (Conflict Resolution). if |A|B = C and |B|C = D, then C ∗𝑠 D.
To resolve conflicts in A and B, we first do the normalization |A|B = 𝐶 to get the conflict-free

version of A (i.e. C). Then we do the normalization |B|C = 𝐷 to get the conflict-free version of

B (i.e. D). Finally, we know that the resulting conflict-free types are apart C ∗ D. We do not lose

information as we have A& B ≤ C &D and C &D ≤ A& B from the type difference specification.

7 Related Work
Function Overloading and the Merge Operator. Function overloading (or method overloading) is

the ability to create multiple functions of the same name with different implementations. In our

context, function overloading is usually achieved by the merge operator to create an overloaded

function. The calculus 𝜆& proposed by Castagna et al. [1995] has a restricted version of the merge

operator for functions only. The merge operator is indexed by a list of types of its components. Its

operational semantics uses the runtime types of values to select the “best approximate” branch of

an overloaded function, but 𝜆& requires runtime subtype checking to support such mechanisms.

Dunfield [2014] presented the first calculus with an unrestricted merge operator, based on

Reynolds [1997]’s merge operator. Though her calculus is powerful and supports function overload-

ing, it lacks determinism and type preservation. Xue et al. [2022] presents a calculus with a merge

operator with preservation, with all 4 features discussed in Sec. 2.2. However, Xue et al. [2022]’s

calculus is still non-deterministic. Other calculi with intersection types and function overloading

have been proposed [Castagna et al. 2015, 2014; Castagna and Xu 2011], but these calculi do not

support a merge operator, and thus avoid the ambiguity problems caused by merges.

Disjoint Intersection Types. Oliveira et al. [2016] proposed the 𝜆𝑖 calculus, which only allows

terms of disjoint types to be merged. The goal of the disjointness restriction was to address the

ambiguity in Dunfield [2014]’s calculus and to create a deterministic calculus. Various extensions

[Alpuim et al. 2017; Bi and Oliveira 2018; Bi et al. 2018] were later proposed to strengthen 𝜆𝑖 with

relaxed restrictions, nested composition and disjoint polymorphism.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

Liberating Merges via Apartness and Guarded Subtyping 279:25

Huang and Oliveira [2020] propose a type-directed operational semantics (TDOS) to specify the

semantics of calculi with disjoint intersection types and a merge operator. TDOS employs parallel

application to support merging multiple functions and applying them simultaneously to a single

input. Additionally, TDOS does not require runtime subtype checking and allows merging and

applying values of types beyond just function types. Our work also employs TDOS, leveraging

apartness to allow certain ambiguous types. This relaxation enables the merging of function types

such as Int → Bool and String → Bool, thereby supporting overloading—previously prohibited

under strict disjointness conditions. Moreover, by combining overloading with first-class labels, we

achieve a lightweight encoding of records [Castagna et al. 1995].

𝐹⊲⊳ [Rioux et al. 2023] is a powerful calculus that supports deterministic merges. 𝐹⊲⊳ employs two

dual disjointness relations, called mergeable and distinguishable, to empower the merge operator

not only with intersection types but also union types. However, such expressiveness comes with

trade-offs. In 𝐹⊲⊳ merges of values with primitive types, such as Int and Bool, are not allowed. As
a consequence of this restriction, return type overloading is not supported either. Thus, we are

not able to merge String → Int and String → Bool together, even though values of those types

can always be disambiguated. In contrast, our 𝜆 |∗| and 𝜆∗ calculi do not support union types, but

support merges of primitive types, as well as return type overloading.

Conflict Resolution in OOP and the Merge Operator. In OOP, mixin classes [Ancona et al. 2003;

Bracha and Cook 1990; Duggan and Sourelis 1996; Flatt et al. 1998] and traits [Fisher and Reppy

2004; Schärli et al. 2003] are two composition mechanisms for code reuse and multiple inheritance.

Name conflicts are a common problem for both the merge operator and OOP. Usually, the mixin

model allows overlapping fields and omits the one with lower priority. Instead, traits only allow no

conflicting merges. Conflicts have to be resolved before composition by renaming or restriction.

Compositional Programming [Zhang et al. 2021] is a recently proposed modular programming

paradigm based on first-class traits [Bi and Oliveira 2018], and implemented by the CP language.

CP is built on top of a core calculus with disjoint intersection types and the merge operator [Fan

et al. 2022]. In CP, parallel application is employed to support merging multiple functions and apply

them together to one input. The use of the merge operator in CP allows it to naturally solve the

Expression Problem [Wadler 1998] and offers modular pattern matching and dependency injection.

Ye et al. [2024] later extend CP to imperative computational effects.

Type difference [Xu et al. 2023] was proposed to resolve conflicts in merges in settings with

disjoint intersection types. Our work uses apartness instead of disjointness, and sets up type

difference as type normalization. Type normalization under apartness not only retains all of the

soundness and completeness properties, but also achieves totality. This enables resolving conflicts

in all terms to be merged.

8 Conclusion
In this paper, we introduce type apartness, a weaker form of disjointness, for calculi with intersection

types and a merge operator. Apartness preserves type soundness and determinism, while enabling

key features: function overloading, return type overloading, extensible records, and nested composition.
We develop two calculi, 𝜆 |∗| and 𝜆∗, which incorporate apartness and guarded subtyping. We

establish connection between them via type normalization, which also establishes a total type

difference operator [Xu et al. 2023] within the apartness framework. Besides, all the properties and

theorems are verified in Coq. Future work will explore extending apartness notion to other type

system constructs, such as union types [Barbanera et al. 1995] and disjoint polymorphism [Alpuim

et al. 2017], broadening its applicability.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

279:26 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Data-Availability Statement
The companion artifact [Xu et al. 2025] includes the Coq development and the appendix.

Acknowledgments
Xuejing Huang acknowledges support from the MathInGreaterParis Fellowship Programme, funded

by the HORIZON EUROPE Marie Sklodowska-Curie Actions and the Fondation Sciences Mathté-

matiques de Paris.

References
João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In European Symposium on Programming

(ESOP). https://doi.org/10.1145/1391289.1391293

Davide Ancona, Giovanni Lagorio, and Elena Zucca. 2003. Jam—designing a Java extension with mixins. ACM Transactions
on Programming Languages and Systems (TOPLAS) 25, 5 (2003), 641–712. doi:10.1145/937563.937567

Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. 1995. Intersection and Union Types: Syntax and

Semantics. Information and Computation 119, 2 (June 1995), 202–230.

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness

of Type Assignment. The Journal of Symbolic Logic 48, 4 (1983), 931–940. http://www.jstor.org/stable/2273659

Xuan Bi and Bruno C. d. S. Oliveira. 2018. Typed First-Class Traits. In 32nd European Conference on Object-Oriented
Programming (ECOOP 2018). doi:10.4230/LIPIcs.ECOOP.2018.9

Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2018. The Essence of Nested Composition. In 32nd European Conference
on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands (LIPIcs, Vol. 109), Todd D.

Millstein (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:33. doi:10.4230/LIPIcs.ECOOP.2018.22

Gilad Bracha and William Cook. 1990. Mixin-based inheritance. ACM Sigplan Notices 25, 10 (1990), 303–311. doi:10.1145/
97945.97982

Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. 1995. A Calculus for Overloaded Functions with Subtyping.

Information and Computation 117, 1, 115–135. doi:10.1006/inco.1995.1033

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic Functions with Set-Theoretic Types: Part

2: Local Type Inference and Type Reconstruction. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for Computing Machinery, New York,

NY, USA, 289–302. doi:10.1145/2676726.2676991

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca Padovani. 2014. Polymorphic

Functions with Set-Theoretic Types: Part 1: Syntax, Semantics, and Evaluation. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14). Association for

Computing Machinery, New York, NY, USA, 5–17. doi:10.1145/2535838.2535840

Giuseppe Castagna and ZhiwuXu. 2011. Set-Theoretic Foundation of Parametric Polymorphism and Subtyping. In Proceedings
of the 16th ACM SIGPLAN International Conference on Functional Programming (Tokyo, Japan) (ICFP ’11). Association for

Computing Machinery, New York, NY, USA, 94–106. doi:10.1145/2034773.2034788

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’00). Association for Computing Machinery, New

York, NY, USA, 198–208. doi:10.1145/351240.351259

Dominic Duggan and Constantinos Sourelis. 1996. Mixin modules. ACM SIGPLAN Notices 31, 6 (1996), 262–273.
Jana Dunfield. 2014. Elaborating intersection and union types. Journal of Functional Programming (JFP) 24, 2-3 (2014),

133–165. doi:10.1006/inco.1995.1086

Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing. ACM Comput. Surv. 54, 5, Article 98 (May 2021), 38 pages.

doi:10.1145/3450952

Erik Ernst. 2001. Family polymorphism. In European Conference on Object-Oriented Programming. Springer, 303–326.
Andong Fan, Xuejing Huang, Han Xu, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2022. Direct Foundations for Compositional

Programming. In 36th European Conference on Object-Oriented Programming (ECOOP 2022) (Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

Dagstuhl, Germany, 18:1–18:28. doi:10.4230/LIPIcs.ECOOP.2022.18

Kathleen Fisher and John Reppy. 2004. A typed calculus of traits. In Electronic proceedings of FOOL, Vol. 2004.
Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. 1998. Classes and mixins. In Proceedings of the 25th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages. 171–183. doi:10.1145/268946.268961
Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic Subtyping: Dealing Set-Theoretically with

Function, Union, Intersection, and Negation Types. J. ACM 55, 4, Article 19 (Sept. 2008), 64 pages. doi:10.1145/1391289.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/937563.937567
http://www.jstor.org/stable/2273659
https://doi.org/10.4230/LIPIcs.ECOOP.2018.9
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://doi.org/10.1006/inco.1995.1033
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2535838.2535840
https://doi.org/10.1145/2034773.2034788
https://doi.org/10.1145/351240.351259
https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.1145/3450952
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://doi.org/10.1145/268946.268961
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293

Liberating Merges via Apartness and Guarded Subtyping 279:27

1391293

Xuejing Huang and Bruno C. d. S. Oliveira. 2020. A type-directed operational semantics for a calculus with a merge operator.

In The 34th European Conference on Object-Oriented Programming (ECOOP 2020. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik GmbH. The Journal’s web

Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. 2021. Taming the Merge Operator. 31 (2021). doi:10.1017/

S0956796821000186 Publisher: Cambridge University Press.

Daan Leijen. 2004. First-class labels for extensible rows (technical report uu-cs-2004-51 ed.). Technical Report UU-CS-2004-51.
https://www.microsoft.com/en-us/research/publication/first-class-labels-for-extensible-rows/ UTCS Technical Report.

Barbara H. Liskov and Jeannette M. Wing. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16, 6
(Nov. 1994).

Zhaohui Luo. 1999. Coercive Subtyping. J. Log. Comput. 9, 1 (1999), 105–130. doi:10.1093/logcom/9.1.105

Koar Marntirosian, Tom Schrijvers, Bruno C. d. S. Oliveira, and Georgios Karachalias. 2020. Resolution as Intersection

Subtyping via Modus Ponens. Proc. ACM Program. Lang. 4, OOPSLA, Article 206 (nov 2020). doi:10.1145/3428274
Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. 2016. Disjoint intersection types. In International Conference on

Functional Programming (ICFP). doi:10.1145/2951913.2951945
Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (jan 2000), 1–44.

doi:10.1145/345099.345100

John C Reynolds. 1988. Preliminary design of the programming language Forsythe. Technical Report. Carnegie Mellon

University.

John C. Reynolds. 1991. The coherence of languages with intersection types. In Lecture Notes in Computer Science (LNCS).
Springer Berlin Heidelberg, 675–700.

John C Reynolds. 1997. Design of the programming language Forsythe. In ALGOL-like languages. 173–233.
John C Reynolds. 1998. Theories of programming languages. Cambridge University Press.

Nick Rioux, Xuejing Huang, Bruno C d S Oliveira, and Steve Zdancewic. 2023. A Bowtie for a Beast: Overloading, Eta

Expansion, and Extensible Data Types in F⊲⊳ . Proceedings of the ACM on Programming Languages 7, POPL (2023), 515–543.
Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. 2003. Traits: Composable units of behaviour.

In European Conference on Object-Oriented Programming (ECOOP).
Jeremy Siek andWalid Taha. 2007. Gradual Typing for Objects. In Proceedings of the 21st European Conference on ECOOP 2007:

Object-Oriented Programming (Berlin, Germany) (ECOOP ’07). Springer-Verlag, Berlin, Heidelberg, 2–27. doi:10.1007/978-
3-540-73589-2_2

Jinhao Tan and Bruno C d S Oliveira. 2023. Dependent Merges and First-Class Environments. In 37th European Conference
on Object-Oriented Programming (ECOOP 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Philip Wadler. 1998. The expression problem. Java-genericity mailing list (1998).
PhilipWadler and Robert Bruce Findler. 2009. Well-typed programs can’t be blamed. In European Symposium on Programming.

Springer, 1–16.

Yanlin Wang, Haoyuan Zhang, Bruno C. d. S. Oliveira, and Marco Servetto. 2018. FHJ: A Formal Model for Hierarchical

Dispatching and Overriding. In 32nd European Conference on Object-Oriented Programming (ECOOP 2018) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 109), Todd Millstein (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 20:1–20:30. doi:10.4230/LIPIcs.ECOOP.2018.20

Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira. 2023. Making a Type Difference: Subtraction on Intersection Types as

Generalized Record Operations. Proc. ACM Program. Lang. 7, POPL, Article 31 (jan 2023), 28 pages. doi:10.1145/3571224

Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira. 2025. Liberating Merges via Apartness and Guarded Subtyping

(Artifact). doi:10.5281/zenodo.16921686

Xu Xue, Bruno C. d. S. Oliveira, and Ningning Xie. 2022. Applicative Intersection Types. In Programming Languages and
Systems, Ilya Sergey (Ed.). Springer Nature Switzerland, Cham, 155–174.

Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2024. Imperative Compositional Programming: Type Sound Distributive

Intersection Subtyping with References via Bidirectional Typing. Proc. ACM Program. Lang. 8, OOPSLA2, Article 342
(Oct. 2024), 30 pages. doi:10.1145/3689782

Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2021. Compositional Programming. ACM Transactions on
Programming Languages and Systems (TOPLAS) 43, 3 (2021), 1–61. doi:10.1145/3460228

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1017/S0956796821000186
https://www.microsoft.com/en-us/research/publication/first-class-labels-for-extensible-rows/
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1145/3428274
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1145/345099.345100
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.4230/LIPIcs.ECOOP.2018.20
https://doi.org/10.1145/3571224
https://doi.org/10.5281/zenodo.16921686
https://doi.org/10.1145/3689782
https://doi.org/10.1145/3460228

279:28 Han Xu, Xuejing Huang, and Bruno C. d. S. Oliveira

Received 2024-10-15; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 279. Publication date: October 2025.

	Abstract
	1 Introduction
	2 Overview
	2.1 C++ Method Resolution: a Source of Inspiration
	2.2 Background
	2.3 Apartness: Relaxing Disjointness
	2.4 Technical Overview

	3 Apartness and Guarded Subtyping for Intersection Types
	3.1 Syntax and Subtyping
	3.2 Type Well-Formedness
	3.3 Apartness
	3.4 Guarded Subtyping

	4 The Lambda-i-apart Calculus
	4.1 Syntax and the Type System of Lambda-i-apart
	4.2 Operational Semantics
	4.3 Type Safety

	5 The Source Calculus Lamabda-i-norm-apart
	5.1 Type Normalization
	5.2 Source Typing and Operational Semantics
	5.3 Translation to Target and Operational Correspondence

	6 Type Difference
	6.1 Partial Type Difference with Disjointness
	6.2 Total Type Difference with Apartness

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

